改进热带气旋风暴内海面温度冷却的统计表示方法

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Joshua B. Wadler, J. Cione, Samantha Michlowitz, Benjamin Jaimes de la Cruz, Lynn K. Shay
{"title":"改进热带气旋风暴内海面温度冷却的统计表示方法","authors":"Joshua B. Wadler, J. Cione, Samantha Michlowitz, Benjamin Jaimes de la Cruz, Lynn K. Shay","doi":"10.1175/waf-d-23-0115.1","DOIUrl":null,"url":null,"abstract":"\nThis study uses fixed buoy time series to create an algorithm for sea surface temperature (SST) cooling underneath a tropical cyclone (TC) inner-core. To build predictive equations, SST cooling is first related to single variable predictors such as the SST before storm arrival, ocean heat content (OHC), mixed layer depth, sea surface salinity and stratification, storm intensity, storm translation speed, and latitude. Of all the single variable predictors, initial SST before storm arrival explains the greatest amount of variance for the change in SST during storm passage. Using a combination of predictors, we created nonlinear predictive equations for SST cooling. In general, the best predictive equations have four predictors and are built with knowledge about the pre-storm ocean structure (e.g., OHC), storm intensity (e.g., minimum sea level pressure), initial SST values before storm arrival, and latitude. The best performing SST cooling equations are broken up into two ocean regimes: when the ocean heat content is less than 60 kJcm−2 (greater spread in SST cooling values) and when the ocean heat content is greater than 60 kJcm−2 (SST cooling is always less than 2 °C) which demonstrates the importance of initial oceanic thermal structure on the in-storm SST value. The new equations are compared to what is currently used in a statistical-dynamical model. Overall, since the ocean providing the latent heat and sensible heat fluxes necessary for TC intensification, the results highlight the importance for consistently obtaining accurate in-storm upper-oceanic thermal structure for accurate TC intensity forecasts.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Statistical Representation of Tropical Cyclone In-Storm Sea Surface Temperature Cooling\",\"authors\":\"Joshua B. Wadler, J. Cione, Samantha Michlowitz, Benjamin Jaimes de la Cruz, Lynn K. Shay\",\"doi\":\"10.1175/waf-d-23-0115.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThis study uses fixed buoy time series to create an algorithm for sea surface temperature (SST) cooling underneath a tropical cyclone (TC) inner-core. To build predictive equations, SST cooling is first related to single variable predictors such as the SST before storm arrival, ocean heat content (OHC), mixed layer depth, sea surface salinity and stratification, storm intensity, storm translation speed, and latitude. Of all the single variable predictors, initial SST before storm arrival explains the greatest amount of variance for the change in SST during storm passage. Using a combination of predictors, we created nonlinear predictive equations for SST cooling. In general, the best predictive equations have four predictors and are built with knowledge about the pre-storm ocean structure (e.g., OHC), storm intensity (e.g., minimum sea level pressure), initial SST values before storm arrival, and latitude. The best performing SST cooling equations are broken up into two ocean regimes: when the ocean heat content is less than 60 kJcm−2 (greater spread in SST cooling values) and when the ocean heat content is greater than 60 kJcm−2 (SST cooling is always less than 2 °C) which demonstrates the importance of initial oceanic thermal structure on the in-storm SST value. The new equations are compared to what is currently used in a statistical-dynamical model. Overall, since the ocean providing the latent heat and sensible heat fluxes necessary for TC intensification, the results highlight the importance for consistently obtaining accurate in-storm upper-oceanic thermal structure for accurate TC intensity forecasts.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-23-0115.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0115.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用固定浮标时间序列创建了热带气旋(TC)内核下方海面温度(SST)冷却算法。为了建立预测方程,首先将 SST 冷却与单变量预测因子相关联,如风暴来临前的 SST、海洋热含量(OHC)、混合层深度、海面盐度和分层、风暴强度、风暴平移速度和纬度。在所有单变量预测因子中,风暴来临前的初始海温对风暴过境期间海温变化的解释方差最大。利用预测因子组合,我们建立了海温冷却的非线性预测方程。一般来说,最佳预测方程有四个预测因子,并且是在了解风暴前海洋结构(如 OHC)、风暴强度(如最低海平面气压)、风暴到达前的初始 SST 值和纬度的基础上建立的。性能最好的 SST 冷却方程分为两种海洋状态:当海洋热含量小于 60 kJcm-2 时(SST 冷却值差异较大)和当海洋热含量大于 60 kJcm-2 时(SST 冷却值始终小于 2 ℃),这表明了初始海洋热结构对风暴内 SST 值的重要性。新方程与统计动力学模式目前使用的方程进行了比较。总之,由于海洋提供了热带气旋加强所需的潜热和显热通量,因此结果突出了持续获得准确的风暴内上层海洋热结构对准确预报热带气旋强度的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Statistical Representation of Tropical Cyclone In-Storm Sea Surface Temperature Cooling
This study uses fixed buoy time series to create an algorithm for sea surface temperature (SST) cooling underneath a tropical cyclone (TC) inner-core. To build predictive equations, SST cooling is first related to single variable predictors such as the SST before storm arrival, ocean heat content (OHC), mixed layer depth, sea surface salinity and stratification, storm intensity, storm translation speed, and latitude. Of all the single variable predictors, initial SST before storm arrival explains the greatest amount of variance for the change in SST during storm passage. Using a combination of predictors, we created nonlinear predictive equations for SST cooling. In general, the best predictive equations have four predictors and are built with knowledge about the pre-storm ocean structure (e.g., OHC), storm intensity (e.g., minimum sea level pressure), initial SST values before storm arrival, and latitude. The best performing SST cooling equations are broken up into two ocean regimes: when the ocean heat content is less than 60 kJcm−2 (greater spread in SST cooling values) and when the ocean heat content is greater than 60 kJcm−2 (SST cooling is always less than 2 °C) which demonstrates the importance of initial oceanic thermal structure on the in-storm SST value. The new equations are compared to what is currently used in a statistical-dynamical model. Overall, since the ocean providing the latent heat and sensible heat fluxes necessary for TC intensification, the results highlight the importance for consistently obtaining accurate in-storm upper-oceanic thermal structure for accurate TC intensity forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weather and Forecasting
Weather and Forecasting 地学-气象与大气科学
CiteScore
5.20
自引率
17.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信