复合材料在超疏水圆柱体上的行为:液滴大小和界面角度的影响

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Woorak Choi, Sungchan Yun
{"title":"复合材料在超疏水圆柱体上的行为:液滴大小和界面角度的影响","authors":"Woorak Choi, Sungchan Yun","doi":"10.3365/kjmm.2024.62.3.222","DOIUrl":null,"url":null,"abstract":"Compound droplets can consist of two or more immiscible substances sharing an interface. Among such droplets, the low-viscosity component of Janus droplets can exhibit peculiar bouncing behavior on nonwettable surfaces. There have been recent advances in droplet control technologies, however the impact dynamics of droplets on complex surfaces, and strategies to control their behavior, have not been extensively studied. This study employs the volume of fluid method to analyze the effects of Janus droplet size and the initial interface angle on the dynamics of the two fluidic components in droplets on superhydrophobic cylinders. Janus droplets are composed of low-viscosity (W-) and high-viscosity liquid (G-component). The dynamic characteristics of Janus droplets are investigated as a function of Weber number (We), initial interface angle, the ratio of the droplet’s diameter to the cylinder’s diameter, and viscosity ratio (α). Numerical models provide a regime map of the separation ratio of Janus droplets based on We and α, and the influence of droplet size on asymmetric bouncing is discussed. This study also examines the threshold We at which separation begins after impact, varying with droplet size and α. In addition, the shape evolutions of the droplets are discussed for various initial interface angles to understand the bouncing behavior and separation efficiency. This study is expected to provide valuable strategies for controlling droplet behavior and separation in applications such as liquid purification, rheology, and solidification.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of Compound Materials on Superhydrophobic Cylinders: Effects of Droplet’s Size and Interface Angle\",\"authors\":\"Woorak Choi, Sungchan Yun\",\"doi\":\"10.3365/kjmm.2024.62.3.222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compound droplets can consist of two or more immiscible substances sharing an interface. Among such droplets, the low-viscosity component of Janus droplets can exhibit peculiar bouncing behavior on nonwettable surfaces. There have been recent advances in droplet control technologies, however the impact dynamics of droplets on complex surfaces, and strategies to control their behavior, have not been extensively studied. This study employs the volume of fluid method to analyze the effects of Janus droplet size and the initial interface angle on the dynamics of the two fluidic components in droplets on superhydrophobic cylinders. Janus droplets are composed of low-viscosity (W-) and high-viscosity liquid (G-component). The dynamic characteristics of Janus droplets are investigated as a function of Weber number (We), initial interface angle, the ratio of the droplet’s diameter to the cylinder’s diameter, and viscosity ratio (α). Numerical models provide a regime map of the separation ratio of Janus droplets based on We and α, and the influence of droplet size on asymmetric bouncing is discussed. This study also examines the threshold We at which separation begins after impact, varying with droplet size and α. In addition, the shape evolutions of the droplets are discussed for various initial interface angles to understand the bouncing behavior and separation efficiency. This study is expected to provide valuable strategies for controlling droplet behavior and separation in applications such as liquid purification, rheology, and solidification.\",\"PeriodicalId\":17894,\"journal\":{\"name\":\"Korean Journal of Metals and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Metals and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3365/kjmm.2024.62.3.222\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2024.62.3.222","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

复合液滴可由两种或两种以上共用界面的不相溶物质组成。在这些液滴中,Janus 液滴的低粘度成分会在非润湿表面上表现出奇特的反弹行为。最近,液滴控制技术取得了一些进展,但对液滴在复杂表面上的冲击动力学以及控制其行为的策略还没有进行广泛的研究。本研究采用流体体积法分析了 Janus 液滴大小和初始界面角度对超疏水圆柱体上液滴中两种流体成分动力学的影响。杰纳斯液滴由低粘度液体(W-组分)和高粘度液体(G-组分)组成。研究了杰纳斯液滴的动态特性与韦伯数(We)、初始界面角、液滴直径与圆柱体直径之比以及粘度比(α)的函数关系。数值模型提供了基于 We 和 α 的 Janus 液滴分离比制度图,并讨论了液滴大小对不对称反弹的影响。此外,还讨论了不同初始界面角度下液滴的形状演变,以了解弹跳行为和分离效率。这项研究有望为液体纯化、流变学和凝固等应用中控制液滴行为和分离提供有价值的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior of Compound Materials on Superhydrophobic Cylinders: Effects of Droplet’s Size and Interface Angle
Compound droplets can consist of two or more immiscible substances sharing an interface. Among such droplets, the low-viscosity component of Janus droplets can exhibit peculiar bouncing behavior on nonwettable surfaces. There have been recent advances in droplet control technologies, however the impact dynamics of droplets on complex surfaces, and strategies to control their behavior, have not been extensively studied. This study employs the volume of fluid method to analyze the effects of Janus droplet size and the initial interface angle on the dynamics of the two fluidic components in droplets on superhydrophobic cylinders. Janus droplets are composed of low-viscosity (W-) and high-viscosity liquid (G-component). The dynamic characteristics of Janus droplets are investigated as a function of Weber number (We), initial interface angle, the ratio of the droplet’s diameter to the cylinder’s diameter, and viscosity ratio (α). Numerical models provide a regime map of the separation ratio of Janus droplets based on We and α, and the influence of droplet size on asymmetric bouncing is discussed. This study also examines the threshold We at which separation begins after impact, varying with droplet size and α. In addition, the shape evolutions of the droplets are discussed for various initial interface angles to understand the bouncing behavior and separation efficiency. This study is expected to provide valuable strategies for controlling droplet behavior and separation in applications such as liquid purification, rheology, and solidification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Metals and Materials
Korean Journal of Metals and Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
1.80
自引率
58.30%
发文量
100
审稿时长
4-8 weeks
期刊介绍: The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信