为多层陶瓷电容器上的锡电镀开发耐腐蚀性更强的电解液

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bonil Ku, Junseong Kim, Yujin Son, K. Min, S. Baeck
{"title":"为多层陶瓷电容器上的锡电镀开发耐腐蚀性更强的电解液","authors":"Bonil Ku, Junseong Kim, Yujin Son, K. Min, S. Baeck","doi":"10.3365/kjmm.2024.62.3.180","DOIUrl":null,"url":null,"abstract":"Capacitors not only store and release electricity but selectively conduct alternating current. Among the various types of capacitors, multi-layer ceramic capacitors (MLCCs) have been widely used in automotive, smartphone, and wearable devices because of their compact size and high capacitance capabilities. In this study, we have developed an electrolyte for tin electroplating on multi-layer ceramic capacitors (MLCCs) to address the barium leaching issue at the termination points of the MLCCs. This issue has been effectively mitigated by introducing NaHSO4 into the conventional tin plating electrolyte as a corrosion inhibitor. This addition facilitates a rapid reaction between the dissolved barium ions and NaHSO4, resulting in the formation of a thin passivation layer on the surface of the MLCC. The BaSO4 passivation layer effectively prohibits excessive leaching of barium ions from the glass in MLCCs, thereby maintaining chip insulation resistance and preventing crack formation. However, the chemical reaction of NaHSO4 and the formation of the passivation layer can lead to the generation of tin hydroxide precipitates due to pH fluctuations. To address this issue, we increase the amount of complexing agent from 100 g/L to 130 g/L. This adjustment enhanced the ability of tin ions to form stronger complexes, thereby enabling stable electrodeposition on the termination of MLCC. Consequently, the final electrolyte for Sn electroplating (denoted as LW-3) simultaneously achieves corrosion resistance and practical working efficiency, resulting in a uniform 5.4 μmthick tin plating layer with outstanding solderability, and high temperature/humidity stability.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Electrolyte with Enhanced Corrosion Resistance for Sn Electroplating on Multi-Layer Ceramic Capacitors\",\"authors\":\"Bonil Ku, Junseong Kim, Yujin Son, K. Min, S. Baeck\",\"doi\":\"10.3365/kjmm.2024.62.3.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitors not only store and release electricity but selectively conduct alternating current. Among the various types of capacitors, multi-layer ceramic capacitors (MLCCs) have been widely used in automotive, smartphone, and wearable devices because of their compact size and high capacitance capabilities. In this study, we have developed an electrolyte for tin electroplating on multi-layer ceramic capacitors (MLCCs) to address the barium leaching issue at the termination points of the MLCCs. This issue has been effectively mitigated by introducing NaHSO4 into the conventional tin plating electrolyte as a corrosion inhibitor. This addition facilitates a rapid reaction between the dissolved barium ions and NaHSO4, resulting in the formation of a thin passivation layer on the surface of the MLCC. The BaSO4 passivation layer effectively prohibits excessive leaching of barium ions from the glass in MLCCs, thereby maintaining chip insulation resistance and preventing crack formation. However, the chemical reaction of NaHSO4 and the formation of the passivation layer can lead to the generation of tin hydroxide precipitates due to pH fluctuations. To address this issue, we increase the amount of complexing agent from 100 g/L to 130 g/L. This adjustment enhanced the ability of tin ions to form stronger complexes, thereby enabling stable electrodeposition on the termination of MLCC. Consequently, the final electrolyte for Sn electroplating (denoted as LW-3) simultaneously achieves corrosion resistance and practical working efficiency, resulting in a uniform 5.4 μmthick tin plating layer with outstanding solderability, and high temperature/humidity stability.\",\"PeriodicalId\":17894,\"journal\":{\"name\":\"Korean Journal of Metals and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Metals and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3365/kjmm.2024.62.3.180\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2024.62.3.180","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电容器不仅能储存和释放电能,还能选择性地传导交流电。在各种类型的电容器中,多层陶瓷电容器(MLCC)因其体积小巧、电容容量大而被广泛应用于汽车、智能手机和可穿戴设备中。在这项研究中,我们开发了一种用于在多层陶瓷电容器(MLCC)上电镀锡的电解液,以解决多层陶瓷电容器终端点的钡浸出问题。通过在传统的镀锡电解液中引入 NaHSO4 作为腐蚀抑制剂,有效地缓解了这一问题。这种添加有利于溶解的钡离子与 NaHSO4 快速反应,从而在 MLCC 表面形成薄薄的钝化层。BaSO4 钝化层可有效阻止钡离子从 MLCC 的玻璃中过度析出,从而保持芯片的绝缘电阻并防止裂纹形成。然而,NaHSO4 的化学反应和钝化层的形成会因 pH 值波动而导致氢氧化锡沉淀的产生。为了解决这个问题,我们将络合剂的用量从 100 克/升增加到 130 克/升。这一调整增强了锡离子形成更强络合物的能力,从而实现了在 MLCC 端部的稳定电沉积。因此,用于锡电镀的最终电解液(记为 LW-3)同时实现了耐腐蚀性和实际工作效率,形成了均匀的 5.4 μm 厚锡镀层,具有出色的可焊性和高温/湿度稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Electrolyte with Enhanced Corrosion Resistance for Sn Electroplating on Multi-Layer Ceramic Capacitors
Capacitors not only store and release electricity but selectively conduct alternating current. Among the various types of capacitors, multi-layer ceramic capacitors (MLCCs) have been widely used in automotive, smartphone, and wearable devices because of their compact size and high capacitance capabilities. In this study, we have developed an electrolyte for tin electroplating on multi-layer ceramic capacitors (MLCCs) to address the barium leaching issue at the termination points of the MLCCs. This issue has been effectively mitigated by introducing NaHSO4 into the conventional tin plating electrolyte as a corrosion inhibitor. This addition facilitates a rapid reaction between the dissolved barium ions and NaHSO4, resulting in the formation of a thin passivation layer on the surface of the MLCC. The BaSO4 passivation layer effectively prohibits excessive leaching of barium ions from the glass in MLCCs, thereby maintaining chip insulation resistance and preventing crack formation. However, the chemical reaction of NaHSO4 and the formation of the passivation layer can lead to the generation of tin hydroxide precipitates due to pH fluctuations. To address this issue, we increase the amount of complexing agent from 100 g/L to 130 g/L. This adjustment enhanced the ability of tin ions to form stronger complexes, thereby enabling stable electrodeposition on the termination of MLCC. Consequently, the final electrolyte for Sn electroplating (denoted as LW-3) simultaneously achieves corrosion resistance and practical working efficiency, resulting in a uniform 5.4 μmthick tin plating layer with outstanding solderability, and high temperature/humidity stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Metals and Materials
Korean Journal of Metals and Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
1.80
自引率
58.30%
发文量
100
审稿时长
4-8 weeks
期刊介绍: The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信