机器学习在预测添加式摩擦搅拌沉积 AA6061 合金机械性能方面的比较研究

Qian Qiao, Quan Liu, Jiong Pu, Haixia Shi, Wenxiao Li, Zhixiong Zhu, Dawei Guo, Hongchang Qian, Dawei Zhang, Xiaogang Li, C. T. Kwok, L. M. Tam
{"title":"机器学习在预测添加式摩擦搅拌沉积 AA6061 合金机械性能方面的比较研究","authors":"Qian Qiao,&nbsp;Quan Liu,&nbsp;Jiong Pu,&nbsp;Haixia Shi,&nbsp;Wenxiao Li,&nbsp;Zhixiong Zhu,&nbsp;Dawei Guo,&nbsp;Hongchang Qian,&nbsp;Dawei Zhang,&nbsp;Xiaogang Li,&nbsp;C. T. Kwok,&nbsp;L. M. Tam","doi":"10.1002/mgea.31","DOIUrl":null,"url":null,"abstract":"<p>Additive friction stir deposition (AFSD) provides strong flexibility and better performance in component design, which is controlled by the process parameters. It is an essential and difficult task to tune those parameters. The recent exploration of machine learning (ML) exhibits great potential to obtain a suitable balance between productivity and set parameters. In this study, ML techniques, including support vector machine (SVM), random forest (RF) and artificial neural network (ANN), are applied to predict the mechanical properties of the AFSD-based AA6061 deposition. Expect for the stable parameters (temperature, force and torque) in situ monitored by the self-developed process-aware kit during the AFSD process and the other factors (rotation speed, traverse speed, feed rate and layer thickness) are also set as input variables. The output variables are microhardness and ultimate tensile strength (UTS). Prediction results show that the ANN model performs the best prediction accuracy with the highest <i>R</i><sup>2</sup> (0.9998) and the lowest mean absolute error (MAE, 0.0050) and root mean square error (RMSE, 0.0063). Furthermore, analysis suggests that the feed rate (24.8%/24.1%) and layer thickness (25.6%/26.6%) indicate a higher contribution that affects the mechanical properties.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.31","citationCount":"0","resultStr":"{\"title\":\"A comparative study of machine learning in predicting the mechanical properties of the deposited AA6061 alloys via additive friction stir deposition\",\"authors\":\"Qian Qiao,&nbsp;Quan Liu,&nbsp;Jiong Pu,&nbsp;Haixia Shi,&nbsp;Wenxiao Li,&nbsp;Zhixiong Zhu,&nbsp;Dawei Guo,&nbsp;Hongchang Qian,&nbsp;Dawei Zhang,&nbsp;Xiaogang Li,&nbsp;C. T. Kwok,&nbsp;L. M. Tam\",\"doi\":\"10.1002/mgea.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Additive friction stir deposition (AFSD) provides strong flexibility and better performance in component design, which is controlled by the process parameters. It is an essential and difficult task to tune those parameters. The recent exploration of machine learning (ML) exhibits great potential to obtain a suitable balance between productivity and set parameters. In this study, ML techniques, including support vector machine (SVM), random forest (RF) and artificial neural network (ANN), are applied to predict the mechanical properties of the AFSD-based AA6061 deposition. Expect for the stable parameters (temperature, force and torque) in situ monitored by the self-developed process-aware kit during the AFSD process and the other factors (rotation speed, traverse speed, feed rate and layer thickness) are also set as input variables. The output variables are microhardness and ultimate tensile strength (UTS). Prediction results show that the ANN model performs the best prediction accuracy with the highest <i>R</i><sup>2</sup> (0.9998) and the lowest mean absolute error (MAE, 0.0050) and root mean square error (RMSE, 0.0063). Furthermore, analysis suggests that the feed rate (24.8%/24.1%) and layer thickness (25.6%/26.6%) indicate a higher contribution that affects the mechanical properties.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.31\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

添加剂搅拌摩擦沉积(AFSD)在部件设计方面具有很强的灵活性和更好的性能,而这是由工艺参数控制的。调整这些参数是一项重要而艰巨的任务。最近对机器学习(ML)的探索显示了在生产率和设定参数之间取得适当平衡的巨大潜力。在本研究中,包括支持向量机(SVM)、随机森林(RF)和人工神经网络(ANN)在内的 ML 技术被用于预测基于 AFSD 的 AA6061 沉积的机械性能。在 AFSD 过程中,由自主开发的过程感知工具包现场监控的稳定参数(温度、力和扭矩)以及其他因素(旋转速度、横移速度、进料速度和层厚)也被设置为输入变量。输出变量是显微硬度和极限拉伸强度(UTS)。预测结果表明,ANN 模型的预测精度最高,R2 最高(0.9998),平均绝对误差(MAE,0.0050)和均方根误差(RMSE,0.0063)最低。此外,分析表明,进给率(24.8%/24.1%)和料层厚度(25.6%/26.6%)对机械性能的影响较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A comparative study of machine learning in predicting the mechanical properties of the deposited AA6061 alloys via additive friction stir deposition

A comparative study of machine learning in predicting the mechanical properties of the deposited AA6061 alloys via additive friction stir deposition

Additive friction stir deposition (AFSD) provides strong flexibility and better performance in component design, which is controlled by the process parameters. It is an essential and difficult task to tune those parameters. The recent exploration of machine learning (ML) exhibits great potential to obtain a suitable balance between productivity and set parameters. In this study, ML techniques, including support vector machine (SVM), random forest (RF) and artificial neural network (ANN), are applied to predict the mechanical properties of the AFSD-based AA6061 deposition. Expect for the stable parameters (temperature, force and torque) in situ monitored by the self-developed process-aware kit during the AFSD process and the other factors (rotation speed, traverse speed, feed rate and layer thickness) are also set as input variables. The output variables are microhardness and ultimate tensile strength (UTS). Prediction results show that the ANN model performs the best prediction accuracy with the highest R2 (0.9998) and the lowest mean absolute error (MAE, 0.0050) and root mean square error (RMSE, 0.0063). Furthermore, analysis suggests that the feed rate (24.8%/24.1%) and layer thickness (25.6%/26.6%) indicate a higher contribution that affects the mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信