评估除冰化学品对冻融循环下机场混凝土路面性能的影响

Seyed Saleh Sadeghi, Ali Abdi Kordani, Mohammad Zarei
{"title":"评估除冰化学品对冻融循环下机场混凝土路面性能的影响","authors":"Seyed Saleh Sadeghi, Ali Abdi Kordani, Mohammad Zarei","doi":"10.56748/ejse.24492","DOIUrl":null,"url":null,"abstract":"Weather conditions such as rainfall and freeze-thaw cycles affect the pavement performance of airports; therefore, methods such as using de-icing chemicals are considered in order to maintain the normal condition of the airport runway. In addition to the above factors, de-icing chemicals play an important role in pavement performance and the damage caused to it due to their chemical nature. Therefore, investigating the effect of de-icing chemicals and determining the appropriate material to maintain the airport's pavement is a priority for engineers. In this study, the effect of three de-icing chemicals, sodium chloride, potassium acetate, and ethylene glycol (at concentrations of 23.3%, 49%, and 69.07%, respectively) on skid resistance (The British Pendulum Test (BPT) and The Road Test Machine (RTM)) and the mechanical properties (Compressive Strength Test) of the concrete under Freezing and Thawing Cycle were investigated. The BPT test results showed that sodium chloride resulted in better skid resistance than other chemicals when the number of cycles is more than 100 cycles. This result was also obtained for all cycles in the RTM test. Also, ethylene glycol was not suitable for improving skid resistance based on BPT and RTM tests. Furthermore, the results of the compressive strength of concrete mixtures showed that the de-icing chemicals reduced the compressive strength of concrete mixtures. Based on all the results, sodium chloride had better results than other chemicals.","PeriodicalId":502439,"journal":{"name":"Electronic Journal of Structural Engineering","volume":"15 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Effect of De-icing Chemicals on Performance of Airport Concrete Pavement under Freeze-Thaw Cycles\",\"authors\":\"Seyed Saleh Sadeghi, Ali Abdi Kordani, Mohammad Zarei\",\"doi\":\"10.56748/ejse.24492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weather conditions such as rainfall and freeze-thaw cycles affect the pavement performance of airports; therefore, methods such as using de-icing chemicals are considered in order to maintain the normal condition of the airport runway. In addition to the above factors, de-icing chemicals play an important role in pavement performance and the damage caused to it due to their chemical nature. Therefore, investigating the effect of de-icing chemicals and determining the appropriate material to maintain the airport's pavement is a priority for engineers. In this study, the effect of three de-icing chemicals, sodium chloride, potassium acetate, and ethylene glycol (at concentrations of 23.3%, 49%, and 69.07%, respectively) on skid resistance (The British Pendulum Test (BPT) and The Road Test Machine (RTM)) and the mechanical properties (Compressive Strength Test) of the concrete under Freezing and Thawing Cycle were investigated. The BPT test results showed that sodium chloride resulted in better skid resistance than other chemicals when the number of cycles is more than 100 cycles. This result was also obtained for all cycles in the RTM test. Also, ethylene glycol was not suitable for improving skid resistance based on BPT and RTM tests. Furthermore, the results of the compressive strength of concrete mixtures showed that the de-icing chemicals reduced the compressive strength of concrete mixtures. Based on all the results, sodium chloride had better results than other chemicals.\",\"PeriodicalId\":502439,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.24492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.24492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降雨和冻融循环等天气条件会影响机场的路面性能,因此需要考虑使用除冰化学品等方法来维持机场跑道的正常状态。除上述因素外,除冰化学品因其化学性质,对路面性能和对路面造成的损害也起着重要作用。因此,研究除冰化学品的影响并确定合适的材料来维护机场跑道是工程师的首要任务。本研究调查了三种除冰化学品氯化钠、醋酸钾和乙二醇(浓度分别为 23.3%、49% 和 69.07%)对混凝土在冻融循环下的抗滑性(英国摆锤试验(BPT)和道路试验机(RTM))和机械性能(抗压强度试验)的影响。BPT 测试结果表明,当循环次数超过 100 次时,氯化钠的抗滑性优于其他化学品。在 RTM 试验中,所有循环也都得出了这一结果。此外,根据 BPT 和 RTM 测试结果,乙二醇也不适合用于提高防滑性。此外,混凝土混合物的抗压强度结果表明,除冰化学品降低了混凝土混合物的抗压强度。根据所有结果,氯化钠的效果优于其他化学品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the Effect of De-icing Chemicals on Performance of Airport Concrete Pavement under Freeze-Thaw Cycles
Weather conditions such as rainfall and freeze-thaw cycles affect the pavement performance of airports; therefore, methods such as using de-icing chemicals are considered in order to maintain the normal condition of the airport runway. In addition to the above factors, de-icing chemicals play an important role in pavement performance and the damage caused to it due to their chemical nature. Therefore, investigating the effect of de-icing chemicals and determining the appropriate material to maintain the airport's pavement is a priority for engineers. In this study, the effect of three de-icing chemicals, sodium chloride, potassium acetate, and ethylene glycol (at concentrations of 23.3%, 49%, and 69.07%, respectively) on skid resistance (The British Pendulum Test (BPT) and The Road Test Machine (RTM)) and the mechanical properties (Compressive Strength Test) of the concrete under Freezing and Thawing Cycle were investigated. The BPT test results showed that sodium chloride resulted in better skid resistance than other chemicals when the number of cycles is more than 100 cycles. This result was also obtained for all cycles in the RTM test. Also, ethylene glycol was not suitable for improving skid resistance based on BPT and RTM tests. Furthermore, the results of the compressive strength of concrete mixtures showed that the de-icing chemicals reduced the compressive strength of concrete mixtures. Based on all the results, sodium chloride had better results than other chemicals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信