Tobias Kubiczek, Kevin Kolpatzeck, Thorsten Schultze, Jan C. Balzer
{"title":"用于太赫兹范围的高频选择性三维打印介质结构","authors":"Tobias Kubiczek, Kevin Kolpatzeck, Thorsten Schultze, Jan C. Balzer","doi":"10.1007/s10762-024-00973-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a terahertz transmission frequency-selective quasi surface (FSQS) that exhibits strong absorption lines and a periodic band-pass characteristic. The FSQS structure is created by laterally combining Fabry-Pérot resonators with different thicknesses. The transfer function of the FSQS can serve as a broadband reference for testing the signal integrity of the transmission path for broadband terahertz systems. The transfer function achieves a combination of band-pass characteristics and sharp resonances with a theoretical attenuation of over 80 dB and with quality factors of more than 40,000 for a combination of 36 resonators. A single FSQS made up of four resonators is 3D printed by fused deposition modeling using a low-loss cyclic olefin copolymer (COC) filament. Finally, the 3D-printed FSQS is characterized using both frequency-domain and time-domain terahertz spectroscopy. The results show an attenuation of over 42 dB and a quality factor above 100.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"21 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly Frequency-Selective 3D-Printed Dielectric Structure for the Terahertz Range\",\"authors\":\"Tobias Kubiczek, Kevin Kolpatzeck, Thorsten Schultze, Jan C. Balzer\",\"doi\":\"10.1007/s10762-024-00973-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a terahertz transmission frequency-selective quasi surface (FSQS) that exhibits strong absorption lines and a periodic band-pass characteristic. The FSQS structure is created by laterally combining Fabry-Pérot resonators with different thicknesses. The transfer function of the FSQS can serve as a broadband reference for testing the signal integrity of the transmission path for broadband terahertz systems. The transfer function achieves a combination of band-pass characteristics and sharp resonances with a theoretical attenuation of over 80 dB and with quality factors of more than 40,000 for a combination of 36 resonators. A single FSQS made up of four resonators is 3D printed by fused deposition modeling using a low-loss cyclic olefin copolymer (COC) filament. Finally, the 3D-printed FSQS is characterized using both frequency-domain and time-domain terahertz spectroscopy. The results show an attenuation of over 42 dB and a quality factor above 100.</p>\",\"PeriodicalId\":16181,\"journal\":{\"name\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10762-024-00973-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00973-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Highly Frequency-Selective 3D-Printed Dielectric Structure for the Terahertz Range
In this paper, we present a terahertz transmission frequency-selective quasi surface (FSQS) that exhibits strong absorption lines and a periodic band-pass characteristic. The FSQS structure is created by laterally combining Fabry-Pérot resonators with different thicknesses. The transfer function of the FSQS can serve as a broadband reference for testing the signal integrity of the transmission path for broadband terahertz systems. The transfer function achieves a combination of band-pass characteristics and sharp resonances with a theoretical attenuation of over 80 dB and with quality factors of more than 40,000 for a combination of 36 resonators. A single FSQS made up of four resonators is 3D printed by fused deposition modeling using a low-loss cyclic olefin copolymer (COC) filament. Finally, the 3D-printed FSQS is characterized using both frequency-domain and time-domain terahertz spectroscopy. The results show an attenuation of over 42 dB and a quality factor above 100.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.