六阶布辛斯方程的良好求解和解析性

IF 1.2 2区 数学 Q1 MATHEMATICS
Amin Esfahani, Achenef Tesfahun
{"title":"六阶布辛斯方程的良好求解和解析性","authors":"Amin Esfahani, Achenef Tesfahun","doi":"10.1142/s0219199724500056","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the sixth-order Boussinesq equation is studied. We extend the local well-posedness theory for this equation with quadratic and cubic nonlinearities to the high dimensional case. In spite of having the “bad” fourth term <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Δ</mi><mi>u</mi></math></span><span></span> in the equation, we derive some dispersive estimates leading to the existence of local solutions which also improves the previous results in the cubic case. In addition, we show persistence of spatial analyticity of solutions for the cubic nonlinearity.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"88 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness and analyticity of solutions for the sixth-order Boussinesq equation\",\"authors\":\"Amin Esfahani, Achenef Tesfahun\",\"doi\":\"10.1142/s0219199724500056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the sixth-order Boussinesq equation is studied. We extend the local well-posedness theory for this equation with quadratic and cubic nonlinearities to the high dimensional case. In spite of having the “bad” fourth term <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Δ</mi><mi>u</mi></math></span><span></span> in the equation, we derive some dispersive estimates leading to the existence of local solutions which also improves the previous results in the cubic case. In addition, we show persistence of spatial analyticity of solutions for the cubic nonlinearity.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500056\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500056","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了六阶布辛斯方程。我们将该方程的二次方和三次方非线性的局部好求解理论扩展到高维情况。尽管方程中存在 "坏 "的第四项 Δu,我们仍推导出了一些分散估计值,从而得出了局部解的存在性,这也改进了之前三次方程的结果。此外,我们还展示了立方非线性解的空间解析性的持久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness and analyticity of solutions for the sixth-order Boussinesq equation

In this paper, the sixth-order Boussinesq equation is studied. We extend the local well-posedness theory for this equation with quadratic and cubic nonlinearities to the high dimensional case. In spite of having the “bad” fourth term Δu in the equation, we derive some dispersive estimates leading to the existence of local solutions which also improves the previous results in the cubic case. In addition, we show persistence of spatial analyticity of solutions for the cubic nonlinearity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信