求助PDF
{"title":"分数相对论薛定谔-乔夸德方程的集中现象","authors":"Vincenzo Ambrosio","doi":"10.1142/s021919972350061x","DOIUrl":null,"url":null,"abstract":"<p>We consider the fractional relativistic Schrödinger–Choquard equation <disp-formula-group><span><math altimg=\"eq-00001.gif\" display=\"block\" overflow=\"scroll\"><mrow><mfenced close=\"\" open=\"{\" separators=\"\"><mrow><mtable columnlines=\"none\" equalcolumns=\"false\" equalrows=\"false\"><mtr><mtd columnalign=\"left\"><msup><mrow><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi mathvariant=\"normal\">Δ</mi><mo stretchy=\"false\">+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo stretchy=\"false\">+</mo><mi>V</mi><mo stretchy=\"false\">(</mo><mi>𝜀</mi><mi>x</mi><mo stretchy=\"false\">)</mo><mi>u</mi><mo>=</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>μ</mi></mrow></msup></mrow></mfrac><mo stretchy=\"false\">∗</mo><mi>F</mi><mo stretchy=\"false\">(</mo><mi>u</mi><mo stretchy=\"false\">)</mo></mrow></mfenced><mi>f</mi><mo stretchy=\"false\">(</mo><mi>u</mi><mo stretchy=\"false\">)</mo></mtd><mtd columnalign=\"left\"><mstyle><mtext>in</mtext></mstyle><mspace width=\".17em\"></mspace><mspace width=\".17em\"></mspace><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd columnalign=\"left\"><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\"false\">)</mo><mo>,</mo></mtd><mtd columnalign=\"left\"><mi>u</mi><mo>></mo><mn>0</mn><mspace width=\".17em\"></mspace><mspace width=\".17em\"></mspace><mstyle><mtext>in</mtext></mstyle><mspace width=\".17em\"></mspace><mspace width=\".17em\"></mspace><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi><mo>></mo><mn>0</mn></math></span><span></span> is a small parameter, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>></mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo>></mo><mn>2</mn><mi>s</mi></math></span><span></span>, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>μ</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi mathvariant=\"normal\">Δ</mi><mo stretchy=\"false\">+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span><span></span> is the fractional relativistic Schrödinger operator, <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>V</mi><mo>:</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>→</mo><mi>ℝ</mi></math></span><span></span> is a continuous potential having a local minimum, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo>:</mo><mi>ℝ</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> is a continuous nonlinearity with subcritical growth at infinity and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mi>f</mi><mo stretchy=\"false\">(</mo><mi>τ</mi><mo stretchy=\"false\">)</mo><mi>d</mi><mi>τ</mi></math></span><span></span>. Exploiting appropriate variational arguments, we construct a family of solutions concentrating around the local minimum of <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>V</mi></math></span><span></span> as <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi><mo>→</mo><mn>0</mn></math></span><span></span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration phenomena for the fractional relativistic Schrödinger–Choquard equation\",\"authors\":\"Vincenzo Ambrosio\",\"doi\":\"10.1142/s021919972350061x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the fractional relativistic Schrödinger–Choquard equation <disp-formula-group><span><math altimg=\\\"eq-00001.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mfenced close=\\\"\\\" open=\\\"{\\\" separators=\\\"\\\"><mrow><mtable columnlines=\\\"none\\\" equalcolumns=\\\"false\\\" equalrows=\\\"false\\\"><mtr><mtd columnalign=\\\"left\\\"><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">−</mo><mi mathvariant=\\\"normal\\\">Δ</mi><mo stretchy=\\\"false\\\">+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo stretchy=\\\"false\\\">+</mo><mi>V</mi><mo stretchy=\\\"false\\\">(</mo><mi>𝜀</mi><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mi>u</mi><mo>=</mo><mfenced close=\\\")\\\" open=\\\"(\\\" separators=\\\"\\\"><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>μ</mi></mrow></msup></mrow></mfrac><mo stretchy=\\\"false\\\">∗</mo><mi>F</mi><mo stretchy=\\\"false\\\">(</mo><mi>u</mi><mo stretchy=\\\"false\\\">)</mo></mrow></mfenced><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>u</mi><mo stretchy=\\\"false\\\">)</mo></mtd><mtd columnalign=\\\"left\\\"><mstyle><mtext>in</mtext></mstyle><mspace width=\\\".17em\\\"></mspace><mspace width=\\\".17em\\\"></mspace><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd columnalign=\\\"left\\\"><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo><mo>,</mo></mtd><mtd columnalign=\\\"left\\\"><mi>u</mi><mo>></mo><mn>0</mn><mspace width=\\\".17em\\\"></mspace><mspace width=\\\".17em\\\"></mspace><mstyle><mtext>in</mtext></mstyle><mspace width=\\\".17em\\\"></mspace><mspace width=\\\".17em\\\"></mspace><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜀</mi><mo>></mo><mn>0</mn></math></span><span></span> is a small parameter, <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi><mo>∈</mo><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi><mo>></mo><mn>0</mn></math></span><span></span>, <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi><mo>></mo><mn>2</mn><mi>s</mi></math></span><span></span>, <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>μ</mi><mo>∈</mo><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mi>s</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">−</mo><mi mathvariant=\\\"normal\\\">Δ</mi><mo stretchy=\\\"false\\\">+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>s</mi></mrow></msup></math></span><span></span> is the fractional relativistic Schrödinger operator, <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>V</mi><mo>:</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>→</mo><mi>ℝ</mi></math></span><span></span> is a continuous potential having a local minimum, <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo>:</mo><mi>ℝ</mi><mo>→</mo><mi>ℝ</mi></math></span><span></span> is a continuous nonlinearity with subcritical growth at infinity and <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>F</mi><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>τ</mi><mo stretchy=\\\"false\\\">)</mo><mi>d</mi><mi>τ</mi></math></span><span></span>. Exploiting appropriate variational arguments, we construct a family of solutions concentrating around the local minimum of <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>V</mi></math></span><span></span> as <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜀</mi><mo>→</mo><mn>0</mn></math></span><span></span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021919972350061x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021919972350061x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用