{"title":"多输出量位回归神经网络","authors":"Ruiting Hao, Xiaorong Yang","doi":"10.1007/s11222-024-10408-6","DOIUrl":null,"url":null,"abstract":"<p>Quantile regression neural network (QRNN) model has received increasing attention in various fields to provide conditional quantiles of responses. However, almost all the available literature about QRNN is devoted to handling the case with one-dimensional responses, which presents a great limitation when we focus on the quantiles of multivariate responses. To deal with this issue, we propose a novel multiple-output quantile regression neural network (MOQRNN) model in this paper to estimate the conditional quantiles of multivariate data. The MOQRNN model is constructed by the following steps. Step 1 acquires the conditional distribution of multivariate responses by a nonparametric method. Step 2 obtains the optimal transport map that pushes the spherical uniform distribution forward to the conditional distribution through the input convex neural network (ICNN). Step 3 provides the conditional quantile contours and regions by the ICNN-based optimal transport map. In both simulation studies and real data application, comparative analyses with the existing method demonstrate that the proposed MOQRNN model is more appealing to yield excellent quantile contours, which are not only smoother but also closer to their theoretical counterparts.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple-output quantile regression neural network\",\"authors\":\"Ruiting Hao, Xiaorong Yang\",\"doi\":\"10.1007/s11222-024-10408-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantile regression neural network (QRNN) model has received increasing attention in various fields to provide conditional quantiles of responses. However, almost all the available literature about QRNN is devoted to handling the case with one-dimensional responses, which presents a great limitation when we focus on the quantiles of multivariate responses. To deal with this issue, we propose a novel multiple-output quantile regression neural network (MOQRNN) model in this paper to estimate the conditional quantiles of multivariate data. The MOQRNN model is constructed by the following steps. Step 1 acquires the conditional distribution of multivariate responses by a nonparametric method. Step 2 obtains the optimal transport map that pushes the spherical uniform distribution forward to the conditional distribution through the input convex neural network (ICNN). Step 3 provides the conditional quantile contours and regions by the ICNN-based optimal transport map. In both simulation studies and real data application, comparative analyses with the existing method demonstrate that the proposed MOQRNN model is more appealing to yield excellent quantile contours, which are not only smoother but also closer to their theoretical counterparts.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10408-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10408-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Quantile regression neural network (QRNN) model has received increasing attention in various fields to provide conditional quantiles of responses. However, almost all the available literature about QRNN is devoted to handling the case with one-dimensional responses, which presents a great limitation when we focus on the quantiles of multivariate responses. To deal with this issue, we propose a novel multiple-output quantile regression neural network (MOQRNN) model in this paper to estimate the conditional quantiles of multivariate data. The MOQRNN model is constructed by the following steps. Step 1 acquires the conditional distribution of multivariate responses by a nonparametric method. Step 2 obtains the optimal transport map that pushes the spherical uniform distribution forward to the conditional distribution through the input convex neural network (ICNN). Step 3 provides the conditional quantile contours and regions by the ICNN-based optimal transport map. In both simulation studies and real data application, comparative analyses with the existing method demonstrate that the proposed MOQRNN model is more appealing to yield excellent quantile contours, which are not only smoother but also closer to their theoretical counterparts.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.