{"title":"利用非线性分数阶 SEIRS 模型与 Crowley-Martin 功能响应和饱和治疗对疾病动态进行综合分析","authors":"Bouissa Ayoub, Tsouli Najib","doi":"10.1142/s1793524523501140","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a comprehensive study of disease spreading dynamics through the application of a nonlinear fractional order epidemic SEIRS model. By incorporating the Crowley–Martin type functional response and a saturated treatment function, the model effectively captures the intricacies of real-world epidemics. Our research establishes the existence, uniqueness, non-negativity and boundedness of the solution, while also investigating the model’s fundamental reproduction number. Additionally, we conduct a thorough analysis of the specific conditions governing the local and global stability of the model’s equilibriums. A notable observation is the variation of the reproduction number with the fractional-order <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>, which represents a memory effect on individuals’ dynamic behavior and reveals the influence of interactions between compartments. To validate these theoretical findings, we employ numerical simulations using Matlab, demonstrating that inhibition measures for susceptibles and the saturated treatment parameters play a pivotal role in determining the disease state. Specifically, we observe that as these parameter values increase, the transition from endemic equilibrium to disease-free equilibrium occurs.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"74 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of disease dynamics using nonlinear fractional order SEIRS model with Crowley–Martin functional response and saturated treatment\",\"authors\":\"Bouissa Ayoub, Tsouli Najib\",\"doi\":\"10.1142/s1793524523501140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a comprehensive study of disease spreading dynamics through the application of a nonlinear fractional order epidemic SEIRS model. By incorporating the Crowley–Martin type functional response and a saturated treatment function, the model effectively captures the intricacies of real-world epidemics. Our research establishes the existence, uniqueness, non-negativity and boundedness of the solution, while also investigating the model’s fundamental reproduction number. Additionally, we conduct a thorough analysis of the specific conditions governing the local and global stability of the model’s equilibriums. A notable observation is the variation of the reproduction number with the fractional-order <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span>, which represents a memory effect on individuals’ dynamic behavior and reveals the influence of interactions between compartments. To validate these theoretical findings, we employ numerical simulations using Matlab, demonstrating that inhibition measures for susceptibles and the saturated treatment parameters play a pivotal role in determining the disease state. Specifically, we observe that as these parameter values increase, the transition from endemic equilibrium to disease-free equilibrium occurs.</p>\",\"PeriodicalId\":49273,\"journal\":{\"name\":\"International Journal of Biomathematics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793524523501140\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523501140","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Comprehensive analysis of disease dynamics using nonlinear fractional order SEIRS model with Crowley–Martin functional response and saturated treatment
This paper presents a comprehensive study of disease spreading dynamics through the application of a nonlinear fractional order epidemic SEIRS model. By incorporating the Crowley–Martin type functional response and a saturated treatment function, the model effectively captures the intricacies of real-world epidemics. Our research establishes the existence, uniqueness, non-negativity and boundedness of the solution, while also investigating the model’s fundamental reproduction number. Additionally, we conduct a thorough analysis of the specific conditions governing the local and global stability of the model’s equilibriums. A notable observation is the variation of the reproduction number with the fractional-order , which represents a memory effect on individuals’ dynamic behavior and reveals the influence of interactions between compartments. To validate these theoretical findings, we employ numerical simulations using Matlab, demonstrating that inhibition measures for susceptibles and the saturated treatment parameters play a pivotal role in determining the disease state. Specifically, we observe that as these parameter values increase, the transition from endemic equilibrium to disease-free equilibrium occurs.
期刊介绍:
The goal of this journal is to present the latest achievements in biomathematics, facilitate international academic exchanges and promote the development of biomathematics. Its research fields include mathematical ecology, infectious disease dynamical system, biostatistics and bioinformatics.
Only original papers will be considered. Submission of a manuscript indicates a tacit understanding that the paper is not actively under consideration for publication with other journals. As submission and reviewing processes are handled electronically whenever possible, the journal promises rapid publication of articles.
The International Journal of Biomathematics is published bimonthly.