{"title":"用于精确分类的子空间聚合算法","authors":"Saeid Amiri, Reza Modarres","doi":"10.1007/s00180-024-01476-3","DOIUrl":null,"url":null,"abstract":"<p>We present a technique for learning via aggregation in supervised classification. The new method improves classification performance, regardless of which classifier is at its core. This approach exploits the information hidden in subspaces by combinations of aggregating variables and is applicable to high-dimensional data sets. We provide algorithms that randomly divide the variables into smaller subsets and permute them before applying a classification method to each subset. We combine the resulting classes to predict the class membership. Theoretical and simulation analyses consistently demonstrate the high accuracy of our classification methods. In comparison to aggregating observations through sampling, our approach proves to be significantly more effective. Through extensive simulations, we evaluate the accuracy of various classification methods. To further illustrate the effectiveness of our techniques, we apply them to five real-world data sets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A subspace aggregating algorithm for accurate classification\",\"authors\":\"Saeid Amiri, Reza Modarres\",\"doi\":\"10.1007/s00180-024-01476-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a technique for learning via aggregation in supervised classification. The new method improves classification performance, regardless of which classifier is at its core. This approach exploits the information hidden in subspaces by combinations of aggregating variables and is applicable to high-dimensional data sets. We provide algorithms that randomly divide the variables into smaller subsets and permute them before applying a classification method to each subset. We combine the resulting classes to predict the class membership. Theoretical and simulation analyses consistently demonstrate the high accuracy of our classification methods. In comparison to aggregating observations through sampling, our approach proves to be significantly more effective. Through extensive simulations, we evaluate the accuracy of various classification methods. To further illustrate the effectiveness of our techniques, we apply them to five real-world data sets.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01476-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01476-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A subspace aggregating algorithm for accurate classification
We present a technique for learning via aggregation in supervised classification. The new method improves classification performance, regardless of which classifier is at its core. This approach exploits the information hidden in subspaces by combinations of aggregating variables and is applicable to high-dimensional data sets. We provide algorithms that randomly divide the variables into smaller subsets and permute them before applying a classification method to each subset. We combine the resulting classes to predict the class membership. Theoretical and simulation analyses consistently demonstrate the high accuracy of our classification methods. In comparison to aggregating observations through sampling, our approach proves to be significantly more effective. Through extensive simulations, we evaluate the accuracy of various classification methods. To further illustrate the effectiveness of our techniques, we apply them to five real-world data sets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.