{"title":"利用谷歌地球引擎平台对冲积和冲积洪水进行灾害风险评估:菲尤斯河流域案例研究","authors":"","doi":"10.1007/s41064-024-00277-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The aim of this study is to conduct a risk analysis of fluvial and pluvial flood disasters, focusing on the vulnerability of those residing in the river basin in coastal regions. However, there are numerous factors and indicators that need to be considered for this type of analysis. Swift and precise acquisition and evaluation of such data is an arduous task, necessitating significant public investment. Remote sensing offers unique data and information flow solutions in areas where access to information is restricted. The Google Earth Engine (GEE), a remote sensing platform, offers strong support to users and researchers in this context. A data-based and informative case study has been conducted to evaluate the disaster risk analysis capacity of the platform. Data on three factors and 17 indicators for assessing disaster risk were determined using coding techniques and web geographic information system (web GIS) applications. The study focused on the Filyos River basin in Turkey. Various satellite images and datasets were utilized to identify indicators, while land use was determined using classification studies employing machine learning algorithms on the GEE platform. Using various applications, we obtained information on ecological vulnerability, fluvial and pluvial flooding analyses, and the value of indicators related to construction and population density. Within the scope of the analysis, it has been determined that the disaster risk index (DRI) value for the basin is 4. This DRI value indicates that an unacceptable risk level exists for the 807,889 individuals residing in the basin.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disaster Risk Assessment of Fluvial and Pluvial Flood Using the Google Earth Engine Platform: a Case Study for the Filyos River Basin\",\"authors\":\"\",\"doi\":\"10.1007/s41064-024-00277-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The aim of this study is to conduct a risk analysis of fluvial and pluvial flood disasters, focusing on the vulnerability of those residing in the river basin in coastal regions. However, there are numerous factors and indicators that need to be considered for this type of analysis. Swift and precise acquisition and evaluation of such data is an arduous task, necessitating significant public investment. Remote sensing offers unique data and information flow solutions in areas where access to information is restricted. The Google Earth Engine (GEE), a remote sensing platform, offers strong support to users and researchers in this context. A data-based and informative case study has been conducted to evaluate the disaster risk analysis capacity of the platform. Data on three factors and 17 indicators for assessing disaster risk were determined using coding techniques and web geographic information system (web GIS) applications. The study focused on the Filyos River basin in Turkey. Various satellite images and datasets were utilized to identify indicators, while land use was determined using classification studies employing machine learning algorithms on the GEE platform. Using various applications, we obtained information on ecological vulnerability, fluvial and pluvial flooding analyses, and the value of indicators related to construction and population density. Within the scope of the analysis, it has been determined that the disaster risk index (DRI) value for the basin is 4. This DRI value indicates that an unacceptable risk level exists for the 807,889 individuals residing in the basin.</p>\",\"PeriodicalId\":56035,\"journal\":{\"name\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s41064-024-00277-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s41064-024-00277-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Disaster Risk Assessment of Fluvial and Pluvial Flood Using the Google Earth Engine Platform: a Case Study for the Filyos River Basin
Abstract
The aim of this study is to conduct a risk analysis of fluvial and pluvial flood disasters, focusing on the vulnerability of those residing in the river basin in coastal regions. However, there are numerous factors and indicators that need to be considered for this type of analysis. Swift and precise acquisition and evaluation of such data is an arduous task, necessitating significant public investment. Remote sensing offers unique data and information flow solutions in areas where access to information is restricted. The Google Earth Engine (GEE), a remote sensing platform, offers strong support to users and researchers in this context. A data-based and informative case study has been conducted to evaluate the disaster risk analysis capacity of the platform. Data on three factors and 17 indicators for assessing disaster risk were determined using coding techniques and web geographic information system (web GIS) applications. The study focused on the Filyos River basin in Turkey. Various satellite images and datasets were utilized to identify indicators, while land use was determined using classification studies employing machine learning algorithms on the GEE platform. Using various applications, we obtained information on ecological vulnerability, fluvial and pluvial flooding analyses, and the value of indicators related to construction and population density. Within the scope of the analysis, it has been determined that the disaster risk index (DRI) value for the basin is 4. This DRI value indicates that an unacceptable risk level exists for the 807,889 individuals residing in the basin.
期刊介绍:
PFG is an international scholarly journal covering the progress and application of photogrammetric methods, remote sensing technology and the interconnected field of geoinformation science. It places special editorial emphasis on the communication of new methodologies in data acquisition and new approaches to optimized processing and interpretation of all types of data which were acquired by photogrammetric methods, remote sensing, image processing and the computer-aided interpretation of such data in general. The journal hence addresses both researchers and students of these disciplines at academic institutions and universities as well as the downstream users in both the private sector and public administration.
Founded in 1926 under the former name Bildmessung und Luftbildwesen, PFG is worldwide the oldest journal on photogrammetry. It is the official journal of the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).