{"title":"包含路径依赖性有界变量项的粗糙微分方程","authors":"Shigeki Aida","doi":"10.1007/s10959-024-01319-3","DOIUrl":null,"url":null,"abstract":"<p>We consider rough differential equations whose coefficients contain path-dependent bounded variation terms and prove the existence and a priori estimate of solutions. These equations include classical path-dependent stochastic differential equations containing running maximum processes and normal reflection terms. We apply these results to determine the topological support of the solution processes.</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"21 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rough Differential Equations Containing Path-Dependent Bounded Variation Terms\",\"authors\":\"Shigeki Aida\",\"doi\":\"10.1007/s10959-024-01319-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider rough differential equations whose coefficients contain path-dependent bounded variation terms and prove the existence and a priori estimate of solutions. These equations include classical path-dependent stochastic differential equations containing running maximum processes and normal reflection terms. We apply these results to determine the topological support of the solution processes.</p>\",\"PeriodicalId\":54760,\"journal\":{\"name\":\"Journal of Theoretical Probability\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01319-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01319-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
We consider rough differential equations whose coefficients contain path-dependent bounded variation terms and prove the existence and a priori estimate of solutions. These equations include classical path-dependent stochastic differential equations containing running maximum processes and normal reflection terms. We apply these results to determine the topological support of the solution processes.
期刊介绍:
Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.