{"title":"自由系统的不变量再探讨","authors":"AURELIA DYMEK, JOANNA KUŁAGA-PRZYMUS, DANIEL SELL","doi":"10.1017/etds.2024.7","DOIUrl":null,"url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline2.png\" /> <jats:tex-math> $\\mathscr {B} \\subseteq \\mathbb {N} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline3.png\" /> <jats:tex-math> $ \\mathscr {B} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free subshift <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline4.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the orbit closure of the characteristic function of the set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline5.png\" /> <jats:tex-math> $ \\mathscr {B} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline6.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, have their analogues for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline7.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline8.png\" /> <jats:tex-math> $\\mathcal B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free systems. <jats:italic>Stoch. Dyn.</jats:italic>21(3) (2021), Paper No. 2140008]. A central assumption in our work is that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline9.png\" /> <jats:tex-math> $\\eta ^{*} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (the Toeplitz sequence that generates the unique minimal component of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline10.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000075_inline11.png\" /> <jats:tex-math> $ X_{\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> from above and below.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant measures for -free systems revisited\",\"authors\":\"AURELIA DYMEK, JOANNA KUŁAGA-PRZYMUS, DANIEL SELL\",\"doi\":\"10.1017/etds.2024.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline2.png\\\" /> <jats:tex-math> $\\\\mathscr {B} \\\\subseteq \\\\mathbb {N} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline3.png\\\" /> <jats:tex-math> $ \\\\mathscr {B} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free subshift <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline4.png\\\" /> <jats:tex-math> $ X_{\\\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the orbit closure of the characteristic function of the set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline5.png\\\" /> <jats:tex-math> $ \\\\mathscr {B} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline6.png\\\" /> <jats:tex-math> $ X_{\\\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, have their analogues for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline7.png\\\" /> <jats:tex-math> $ X_{\\\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline8.png\\\" /> <jats:tex-math> $\\\\mathcal B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free systems. <jats:italic>Stoch. Dyn.</jats:italic>21(3) (2021), Paper No. 2140008]. A central assumption in our work is that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline9.png\\\" /> <jats:tex-math> $\\\\eta ^{*} $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (the Toeplitz sequence that generates the unique minimal component of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline10.png\\\" /> <jats:tex-math> $ X_{\\\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000075_inline11.png\\\" /> <jats:tex-math> $ X_{\\\\eta } $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> from above and below.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For $\mathscr {B} \subseteq \mathbb {N} $ , the $ \mathscr {B} $ -free subshift $ X_{\eta } $ is the orbit closure of the characteristic function of the set of $ \mathscr {B} $ -free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of $ X_{\eta } $ , have their analogues for $ X_{\eta } $ as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in $\mathcal B$ -free systems. Stoch. Dyn.21(3) (2021), Paper No. 2140008]. A central assumption in our work is that $\eta ^{*} $ (the Toeplitz sequence that generates the unique minimal component of $ X_{\eta } $ ) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in $ X_{\eta } $ from above and below.