动态熵的分类基础

IF 0.6 4区 数学 Q3 MATHEMATICS
Suddhasattwa Das
{"title":"动态熵的分类基础","authors":"Suddhasattwa Das","doi":"10.1007/s10485-024-09763-2","DOIUrl":null,"url":null,"abstract":"<div><p>Many branches of theoretical and applied mathematics require a quantifiable notion of complexity. One such circumstance is a topological dynamical system—which involves a continuous self-map on a metric space. There are many notions of complexity one can assign to the repeated iterations of the map. One of the foundational discoveries of dynamical systems theory is that these have a common limit, known as the topological entropy of the system. We present a category-theoretic view of topological dynamical entropy, which reveals that the common limit is a consequence of the structural assumptions on these notions. One of the key tools developed is that of a qualifying pair of functors, which ensure a limit preserving property in a manner similar to the sandwiching theorem from Real Analysis. It is shown that the diameter and Lebesgue number of open covers of a compact space, form a qualifying pair of functors. The various notions of complexity are expressed as functors, and natural transformations between these functors lead to their joint convergence to the common limit.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Categorical Basis of Dynamical Entropy\",\"authors\":\"Suddhasattwa Das\",\"doi\":\"10.1007/s10485-024-09763-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many branches of theoretical and applied mathematics require a quantifiable notion of complexity. One such circumstance is a topological dynamical system—which involves a continuous self-map on a metric space. There are many notions of complexity one can assign to the repeated iterations of the map. One of the foundational discoveries of dynamical systems theory is that these have a common limit, known as the topological entropy of the system. We present a category-theoretic view of topological dynamical entropy, which reveals that the common limit is a consequence of the structural assumptions on these notions. One of the key tools developed is that of a qualifying pair of functors, which ensure a limit preserving property in a manner similar to the sandwiching theorem from Real Analysis. It is shown that the diameter and Lebesgue number of open covers of a compact space, form a qualifying pair of functors. The various notions of complexity are expressed as functors, and natural transformations between these functors lead to their joint convergence to the common limit.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"32 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-024-09763-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09763-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

理论数学和应用数学的许多分支都需要一个可量化的复杂性概念。拓扑动态系统就是这样一种情况--它涉及度量空间上的连续自映射。有许多复杂性概念可以赋予映射的重复迭代。动力系统理论的基础发现之一是,这些概念有一个共同的极限,即系统的拓扑熵。我们提出了拓扑动态熵的范畴理论观点,揭示了共同极限是这些概念的结构假设的结果。我们开发的关键工具之一是一对限定函数,它以类似于实数分析中的夹层定理的方式确保了极限保持特性。研究表明,紧凑空间开盖的直径和勒贝格数构成了一对限定函子。复杂性的各种概念都用函数表示,这些函数之间的自然变换导致它们共同趋近于共同极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Categorical Basis of Dynamical Entropy

The Categorical Basis of Dynamical Entropy

The Categorical Basis of Dynamical Entropy

Many branches of theoretical and applied mathematics require a quantifiable notion of complexity. One such circumstance is a topological dynamical system—which involves a continuous self-map on a metric space. There are many notions of complexity one can assign to the repeated iterations of the map. One of the foundational discoveries of dynamical systems theory is that these have a common limit, known as the topological entropy of the system. We present a category-theoretic view of topological dynamical entropy, which reveals that the common limit is a consequence of the structural assumptions on these notions. One of the key tools developed is that of a qualifying pair of functors, which ensure a limit preserving property in a manner similar to the sandwiching theorem from Real Analysis. It is shown that the diameter and Lebesgue number of open covers of a compact space, form a qualifying pair of functors. The various notions of complexity are expressed as functors, and natural transformations between these functors lead to their joint convergence to the common limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信