{"title":"根据有效繁殖数量评估土耳其 COVID-19 感染的疫苗接种和漏报情况","authors":"Tuğba Akman, Emek Köse, Necibe Tuncer","doi":"10.1142/s1793524523501024","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce a SEIR-type COVID-19 model where the infected class is further divided into subclasses with individuals in intensive care (ICUs) and ventilation units. The model is calibrated with the symptomatic COVID-19 cases, deaths, and the number of patients in ICUs and ventilation units as reported by Republic of Turkey, Ministry of Health for the period 11 March 2020 through 30 May 2020 when the nationwide lockdown is in order. COVID-19 interventions in Turkey are incorporated into the model to detect the future trend of the outbreak accurately. We tested the effect of underreporting and we found that the peaks of the disease differ significantly depending on the rate of underreporting, however, the timing of the peaks remains constant. The lockdown is lifted on 1 June, and the model is modified to include a time-dependent transmission rate which is linked to the effective reproduction number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> through basic reproduction number <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. The modified model captures the changing dynamics and peaks of the outbreak successfully. With the onset of vaccination on 13 January 2021, we augment the model with the vaccination class to investigate the impact of vaccination rate and efficacy. We observe that vaccination rate is a more critical parameter than the vaccine efficacy to eliminate the disease successfully.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"64 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of vaccination and underreporting on COVID-19 infections in Turkey based on effective reproduction number\",\"authors\":\"Tuğba Akman, Emek Köse, Necibe Tuncer\",\"doi\":\"10.1142/s1793524523501024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce a SEIR-type COVID-19 model where the infected class is further divided into subclasses with individuals in intensive care (ICUs) and ventilation units. The model is calibrated with the symptomatic COVID-19 cases, deaths, and the number of patients in ICUs and ventilation units as reported by Republic of Turkey, Ministry of Health for the period 11 March 2020 through 30 May 2020 when the nationwide lockdown is in order. COVID-19 interventions in Turkey are incorporated into the model to detect the future trend of the outbreak accurately. We tested the effect of underreporting and we found that the peaks of the disease differ significantly depending on the rate of underreporting, however, the timing of the peaks remains constant. The lockdown is lifted on 1 June, and the model is modified to include a time-dependent transmission rate which is linked to the effective reproduction number <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">ℛ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> through basic reproduction number <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">ℛ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. The modified model captures the changing dynamics and peaks of the outbreak successfully. With the onset of vaccination on 13 January 2021, we augment the model with the vaccination class to investigate the impact of vaccination rate and efficacy. We observe that vaccination rate is a more critical parameter than the vaccine efficacy to eliminate the disease successfully.</p>\",\"PeriodicalId\":49273,\"journal\":{\"name\":\"International Journal of Biomathematics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793524523501024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523501024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Assessment of vaccination and underreporting on COVID-19 infections in Turkey based on effective reproduction number
In this paper, we introduce a SEIR-type COVID-19 model where the infected class is further divided into subclasses with individuals in intensive care (ICUs) and ventilation units. The model is calibrated with the symptomatic COVID-19 cases, deaths, and the number of patients in ICUs and ventilation units as reported by Republic of Turkey, Ministry of Health for the period 11 March 2020 through 30 May 2020 when the nationwide lockdown is in order. COVID-19 interventions in Turkey are incorporated into the model to detect the future trend of the outbreak accurately. We tested the effect of underreporting and we found that the peaks of the disease differ significantly depending on the rate of underreporting, however, the timing of the peaks remains constant. The lockdown is lifted on 1 June, and the model is modified to include a time-dependent transmission rate which is linked to the effective reproduction number through basic reproduction number . The modified model captures the changing dynamics and peaks of the outbreak successfully. With the onset of vaccination on 13 January 2021, we augment the model with the vaccination class to investigate the impact of vaccination rate and efficacy. We observe that vaccination rate is a more critical parameter than the vaccine efficacy to eliminate the disease successfully.
期刊介绍:
The goal of this journal is to present the latest achievements in biomathematics, facilitate international academic exchanges and promote the development of biomathematics. Its research fields include mathematical ecology, infectious disease dynamical system, biostatistics and bioinformatics.
Only original papers will be considered. Submission of a manuscript indicates a tacit understanding that the paper is not actively under consideration for publication with other journals. As submission and reviewing processes are handled electronically whenever possible, the journal promises rapid publication of articles.
The International Journal of Biomathematics is published bimonthly.