延迟扩散有毒浮游植物-浮游动物模型的分岔分析和模式形成

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ming Wu, Hongxing Yao
{"title":"延迟扩散有毒浮游植物-浮游动物模型的分岔分析和模式形成","authors":"Ming Wu, Hongxing Yao","doi":"10.1142/s1793524523501152","DOIUrl":null,"url":null,"abstract":"<p>This study considers a model which incorporates delays, diffusion and toxicity in a phytoplankton–zooplankton system. Initially, we analyze the global existence, asymptotic behavior and persistence of the solution. We then analyze the equilibria’s local stability and investigate the non-delayed system’s bifurcation phenomena, including Turing and Hopf bifurcations and their combination. Subsequently, we explore the effects of delays on bifurcation and the global stability of the system using Lyapunov functional, focusing on Hopf and Turing–Hopf bifurcations. Finally, we present numerical simulations to validate the theoretical results and verify the emergence of various spatial patterns in the system.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation analysis and pattern formation of a delayed diffusive toxic-phytoplankton–zooplankton model\",\"authors\":\"Ming Wu, Hongxing Yao\",\"doi\":\"10.1142/s1793524523501152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study considers a model which incorporates delays, diffusion and toxicity in a phytoplankton–zooplankton system. Initially, we analyze the global existence, asymptotic behavior and persistence of the solution. We then analyze the equilibria’s local stability and investigate the non-delayed system’s bifurcation phenomena, including Turing and Hopf bifurcations and their combination. Subsequently, we explore the effects of delays on bifurcation and the global stability of the system using Lyapunov functional, focusing on Hopf and Turing–Hopf bifurcations. Finally, we present numerical simulations to validate the theoretical results and verify the emergence of various spatial patterns in the system.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793524523501152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523501152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究考虑了浮游植物-浮游动物系统中的延迟、扩散和毒性模型。首先,我们分析了解的全局存在性、渐近行为和持久性。然后,我们分析了平衡态的局部稳定性,并研究了非延迟系统的分岔现象,包括图灵分岔和霍普夫分岔及其组合。随后,我们利用 Lyapunov 函数探讨了延迟对分岔和系统全局稳定性的影响,重点是霍普夫分岔和图灵-霍普夫分岔。最后,我们通过数值模拟来验证理论结果,并验证系统中出现的各种空间模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation analysis and pattern formation of a delayed diffusive toxic-phytoplankton–zooplankton model

This study considers a model which incorporates delays, diffusion and toxicity in a phytoplankton–zooplankton system. Initially, we analyze the global existence, asymptotic behavior and persistence of the solution. We then analyze the equilibria’s local stability and investigate the non-delayed system’s bifurcation phenomena, including Turing and Hopf bifurcations and their combination. Subsequently, we explore the effects of delays on bifurcation and the global stability of the system using Lyapunov functional, focusing on Hopf and Turing–Hopf bifurcations. Finally, we present numerical simulations to validate the theoretical results and verify the emergence of various spatial patterns in the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信