具有两个 Ornstein-Uhlenbeck 过程和饱和发生率的 COVID-19 随机模型的动力学行为

IF 2.4 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xiaoyu Li, Zhiming Li
{"title":"具有两个 Ornstein-Uhlenbeck 过程和饱和发生率的 COVID-19 随机模型的动力学行为","authors":"Xiaoyu Li, Zhiming Li","doi":"10.1142/s1793524523501085","DOIUrl":null,"url":null,"abstract":"<p>According to the transmission characteristics of COVID-19, this paper proposes a stochastic SAIRS epidemic model with two mean reversion Ornstein–Uhlenbeck processes and saturated incidence rates. We first prove the existence and uniqueness of the global solution in the stochastic model. Using several suitable Lyapunov methods, we then derive the extinction and persistence of COVID-19 under certain conditions. Further, stationary distribution and ergodic properties are obtained. Moreover, we obtain the probability density function of the stochastic model around the equilibrium. Numerical simulations illustrate our theoretical results and the effect of essential parameters. Finally, we apply the model to investigate the latest outbreak of the COVID-19 epidemic in Guangzhou city, China.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"6 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical behavior of a stochastic COVID-19 model with two Ornstein–Uhlenbeck processes and saturated incidence rates\",\"authors\":\"Xiaoyu Li, Zhiming Li\",\"doi\":\"10.1142/s1793524523501085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>According to the transmission characteristics of COVID-19, this paper proposes a stochastic SAIRS epidemic model with two mean reversion Ornstein–Uhlenbeck processes and saturated incidence rates. We first prove the existence and uniqueness of the global solution in the stochastic model. Using several suitable Lyapunov methods, we then derive the extinction and persistence of COVID-19 under certain conditions. Further, stationary distribution and ergodic properties are obtained. Moreover, we obtain the probability density function of the stochastic model around the equilibrium. Numerical simulations illustrate our theoretical results and the effect of essential parameters. Finally, we apply the model to investigate the latest outbreak of the COVID-19 epidemic in Guangzhou city, China.</p>\",\"PeriodicalId\":49273,\"journal\":{\"name\":\"International Journal of Biomathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793524523501085\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523501085","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根据 COVID-19 的传播特点,本文提出了一个具有两个均值回归 Ornstein-Uhlenbeck 过程和饱和发病率的随机 SAIRS 流行模型。我们首先证明了随机模型全局解的存在性和唯一性。然后,我们利用几种合适的 Lyapunov 方法,推导出 COVID-19 在特定条件下的消亡和持续性。此外,我们还获得了静态分布和遍历特性。此外,我们还得到了该随机模型在均衡点附近的概率密度函数。数值模拟说明了我们的理论结果和重要参数的影响。最后,我们应用该模型研究了最近在中国广州市爆发的 COVID-19 流行病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical behavior of a stochastic COVID-19 model with two Ornstein–Uhlenbeck processes and saturated incidence rates

According to the transmission characteristics of COVID-19, this paper proposes a stochastic SAIRS epidemic model with two mean reversion Ornstein–Uhlenbeck processes and saturated incidence rates. We first prove the existence and uniqueness of the global solution in the stochastic model. Using several suitable Lyapunov methods, we then derive the extinction and persistence of COVID-19 under certain conditions. Further, stationary distribution and ergodic properties are obtained. Moreover, we obtain the probability density function of the stochastic model around the equilibrium. Numerical simulations illustrate our theoretical results and the effect of essential parameters. Finally, we apply the model to investigate the latest outbreak of the COVID-19 epidemic in Guangzhou city, China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biomathematics
International Journal of Biomathematics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.70
自引率
13.60%
发文量
820
审稿时长
7.5 months
期刊介绍: The goal of this journal is to present the latest achievements in biomathematics, facilitate international academic exchanges and promote the development of biomathematics. Its research fields include mathematical ecology, infectious disease dynamical system, biostatistics and bioinformatics. Only original papers will be considered. Submission of a manuscript indicates a tacit understanding that the paper is not actively under consideration for publication with other journals. As submission and reviewing processes are handled electronically whenever possible, the journal promises rapid publication of articles. The International Journal of Biomathematics is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信