反相振荡器非经典状态的概率表示法

Pub Date : 2024-03-08 DOI:10.1007/s10946-024-10182-w
Matyas Mechler, Margarita A. Man’ko, Vladimir I. Man’ko, Peter Adam
{"title":"反相振荡器非经典状态的概率表示法","authors":"Matyas Mechler,&nbsp;Margarita A. Man’ko,&nbsp;Vladimir I. Man’ko,&nbsp;Peter Adam","doi":"10.1007/s10946-024-10182-w","DOIUrl":null,"url":null,"abstract":"<div><p>We determine the evolving probability representations of several important nonclassical states of the inverted oscillator by applying the method of integrals of motion for this system. The considered nonclassical states initially prepared in the potential of the harmonic oscillator are even and odd Schrödinger cat states, squeezed coherent states, and lattice superpositions of coherent states. The latter superpositions can approximate several nonclassical states with high precision, hence their probability representation can describe various nonclassical states of the inverted oscillators. Explicit results are shown for the approximation of number states, photon number superpositions, and amplitude squeezed states by determining the parameters of the superposition appearing in the probability</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability Representation of Nonclassical States of the Inverted Oscillator\",\"authors\":\"Matyas Mechler,&nbsp;Margarita A. Man’ko,&nbsp;Vladimir I. Man’ko,&nbsp;Peter Adam\",\"doi\":\"10.1007/s10946-024-10182-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We determine the evolving probability representations of several important nonclassical states of the inverted oscillator by applying the method of integrals of motion for this system. The considered nonclassical states initially prepared in the potential of the harmonic oscillator are even and odd Schrödinger cat states, squeezed coherent states, and lattice superpositions of coherent states. The latter superpositions can approximate several nonclassical states with high precision, hence their probability representation can describe various nonclassical states of the inverted oscillators. Explicit results are shown for the approximation of number states, photon number superpositions, and amplitude squeezed states by determining the parameters of the superposition appearing in the probability</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10946-024-10182-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-024-10182-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过对倒置振荡器应用运动积分法,确定了该系统几种重要的非经典状态的演化概率表示。最初在谐波振荡器势中准备的非经典状态包括偶数和奇数薛定谔猫态、挤压相干态和相干态的晶格叠加。后一种叠加可以高精度地逼近几种非经典态,因此它们的概率表示可以描述反相振荡器的各种非经典态。通过确定出现在概率表示中的叠加参数,显示了数态、光子数叠加和振幅挤压态的近似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Probability Representation of Nonclassical States of the Inverted Oscillator

We determine the evolving probability representations of several important nonclassical states of the inverted oscillator by applying the method of integrals of motion for this system. The considered nonclassical states initially prepared in the potential of the harmonic oscillator are even and odd Schrödinger cat states, squeezed coherent states, and lattice superpositions of coherent states. The latter superpositions can approximate several nonclassical states with high precision, hence their probability representation can describe various nonclassical states of the inverted oscillators. Explicit results are shown for the approximation of number states, photon number superpositions, and amplitude squeezed states by determining the parameters of the superposition appearing in the probability

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信