修正利玛窦流的特征值下限和分裂

IF 2.1 2区 数学 Q1 MATHEMATICS
Tobias Holck Colding, William P. Minicozzi II
{"title":"修正利玛窦流的特征值下限和分裂","authors":"Tobias Holck Colding, William P. Minicozzi II","doi":"10.1515/ans-2022-0083","DOIUrl":null,"url":null,"abstract":"We prove sharp lower bounds for eigenvalues of the drift Laplacian for a modified Ricci flow. The modified Ricci flow is a system of coupled equations for a metric and weighted volume that plays an important role in Ricci flow. We will also show that there is a splitting theorem in the case of equality.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"32 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenvalue lower bounds and splitting for modified Ricci flow\",\"authors\":\"Tobias Holck Colding, William P. Minicozzi II\",\"doi\":\"10.1515/ans-2022-0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove sharp lower bounds for eigenvalues of the drift Laplacian for a modified Ricci flow. The modified Ricci flow is a system of coupled equations for a metric and weighted volume that plays an important role in Ricci flow. We will also show that there is a splitting theorem in the case of equality.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0083\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0083","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了修正利玛窦流的漂移拉普拉奇特征值的尖锐下界。修正利玛窦流是一个度量和加权体积的耦合方程组,在利玛窦流中发挥着重要作用。我们还将证明在相等的情况下存在分裂定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvalue lower bounds and splitting for modified Ricci flow
We prove sharp lower bounds for eigenvalues of the drift Laplacian for a modified Ricci flow. The modified Ricci flow is a system of coupled equations for a metric and weighted volume that plays an important role in Ricci flow. We will also show that there is a splitting theorem in the case of equality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信