伯努利小波在杰弗里-哈梅尔流动问题数值求解中的应用

IF 1.7 4区 工程技术 Q3 MECHANICS
Vivek, Manoj Kumar
{"title":"伯努利小波在杰弗里-哈梅尔流动问题数值求解中的应用","authors":"Vivek, Manoj Kumar","doi":"10.1080/10407790.2024.2325026","DOIUrl":null,"url":null,"abstract":"In this study, we introduced the Bernoulli wavelet method (BWM) to address the nonlinear Jeffery–Hamel flow problem. Utilizing a newly devised operational matrix of integration with the Bernoulli w...","PeriodicalId":49732,"journal":{"name":"Numerical Heat Transfer Part B-Fundamentals","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bernoulli wavelet application to the numerical solution of Jeffery–Hamel flow problem\",\"authors\":\"Vivek, Manoj Kumar\",\"doi\":\"10.1080/10407790.2024.2325026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduced the Bernoulli wavelet method (BWM) to address the nonlinear Jeffery–Hamel flow problem. Utilizing a newly devised operational matrix of integration with the Bernoulli w...\",\"PeriodicalId\":49732,\"journal\":{\"name\":\"Numerical Heat Transfer Part B-Fundamentals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Heat Transfer Part B-Fundamentals\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10407790.2024.2325026\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Heat Transfer Part B-Fundamentals","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10407790.2024.2325026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们引入了伯努利小波法(BWM)来解决非线性杰弗里-哈梅尔流动问题。利用新设计的运算矩阵与伯努利小波法进行整合,可以解决非线性杰弗里-哈梅尔流动问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bernoulli wavelet application to the numerical solution of Jeffery–Hamel flow problem
In this study, we introduced the Bernoulli wavelet method (BWM) to address the nonlinear Jeffery–Hamel flow problem. Utilizing a newly devised operational matrix of integration with the Bernoulli w...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
18
审稿时长
2.8 months
期刊介绍: Published 12 times per year, Numerical Heat Transfer, Part B: Fundamentals addresses all aspects of the methodology for the numerical solution of problems in heat and mass transfer as well as fluid flow. The journal’s scope also encompasses modeling of complex physical phenomena that serves as a foundation for attaining numerical solutions, and includes numerical or experimental results that support methodology development. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. The Editor reserves the right to reject without peer review any papers deemed unsuitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信