充分降维的无切片视角:选择性回顾与最新发展

IF 1.7 3区 数学 Q1 STATISTICS & PROBABILITY
Lu Li, Xiaofeng Shao, Zhou Yu
{"title":"充分降维的无切片视角:选择性回顾与最新发展","authors":"Lu Li,&nbsp;Xiaofeng Shao,&nbsp;Zhou Yu","doi":"10.1111/insr.12565","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Since the pioneering work of sliced inverse regression, sufficient dimension reduction has been growing into a mature field in statistics and it has broad applications to regression diagnostics, data visualisation, image processing and machine learning. In this paper, we provide a review of several popular inverse regression methods, including sliced inverse regression (SIR) method and principal hessian directions (PHD) method. In addition, we adopt a conditional characteristic function approach and develop a new class of slicing-free methods, which are parallel to the classical SIR and PHD, and are named weighted inverse regression ensemble (WIRE) and weighted PHD (WPHD), respectively. Relationship with recently developed martingale difference divergence matrix is also revealed. Numerical studies and a real data example show that the proposed slicing-free alternatives have superior performance than SIR and PHD.</p>\n </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Slicing-Free Perspective to Sufficient Dimension Reduction: Selective Review and Recent Developments\",\"authors\":\"Lu Li,&nbsp;Xiaofeng Shao,&nbsp;Zhou Yu\",\"doi\":\"10.1111/insr.12565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Since the pioneering work of sliced inverse regression, sufficient dimension reduction has been growing into a mature field in statistics and it has broad applications to regression diagnostics, data visualisation, image processing and machine learning. In this paper, we provide a review of several popular inverse regression methods, including sliced inverse regression (SIR) method and principal hessian directions (PHD) method. In addition, we adopt a conditional characteristic function approach and develop a new class of slicing-free methods, which are parallel to the classical SIR and PHD, and are named weighted inverse regression ensemble (WIRE) and weighted PHD (WPHD), respectively. Relationship with recently developed martingale difference divergence matrix is also revealed. Numerical studies and a real data example show that the proposed slicing-free alternatives have superior performance than SIR and PHD.</p>\\n </div>\",\"PeriodicalId\":14479,\"journal\":{\"name\":\"International Statistical Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Statistical Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12565\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12565","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要自切片反回归的开创性工作以来,充分降维已逐渐发展成为统计学中的一个成熟领域,并在回归诊断、数据可视化、图像处理和机器学习等方面有着广泛的应用。在本文中,我们回顾了几种流行的反回归方法,包括切片反回归(SIR)方法和主哈希安方向(PHD)方法。此外,我们采用条件特征函数方法,开发了一类新的无切片方法,与经典的 SIR 和 PHD 方法并行,并分别命名为加权反回归集合(WIRE)和加权 PHD(WPHD)。此外,还揭示了与最近开发的马氏差分发散矩阵的关系。数值研究和真实数据实例表明,所提出的无切分替代方案比 SIR 和 PHD 具有更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Slicing-Free Perspective to Sufficient Dimension Reduction: Selective Review and Recent Developments

Since the pioneering work of sliced inverse regression, sufficient dimension reduction has been growing into a mature field in statistics and it has broad applications to regression diagnostics, data visualisation, image processing and machine learning. In this paper, we provide a review of several popular inverse regression methods, including sliced inverse regression (SIR) method and principal hessian directions (PHD) method. In addition, we adopt a conditional characteristic function approach and develop a new class of slicing-free methods, which are parallel to the classical SIR and PHD, and are named weighted inverse regression ensemble (WIRE) and weighted PHD (WPHD), respectively. Relationship with recently developed martingale difference divergence matrix is also revealed. Numerical studies and a real data example show that the proposed slicing-free alternatives have superior performance than SIR and PHD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Statistical Review
International Statistical Review 数学-统计学与概率论
CiteScore
4.30
自引率
5.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信