具有部分交互作用的交叉模型的优化设计

Pub Date : 2024-03-07 DOI:10.1002/sta4.668
Futao Zhang, Pierre Druilhet, Xiangshun Kong
{"title":"具有部分交互作用的交叉模型的优化设计","authors":"Futao Zhang, Pierre Druilhet, Xiangshun Kong","doi":"10.1002/sta4.668","DOIUrl":null,"url":null,"abstract":"This paper studies the universally optimal designs for estimating total effects under crossover models with partial interactions. We provide necessary and sufficient conditions for a symmetric design to be universally optimal, based on which algorithms can be used to derive optimal symmetric designs under any form of the within-block covariance matrix. To cope with the computational complexity of algorithms when the experimental scale is too large, we provide the analytical form of optimal designs under the type-H covariance matrix. We find that for a fixed number of treatments, say <mjx-container aria-label=\"t\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"t\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/c3669d78-641d-4172-958e-37ddc1934825/sta4668-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"t\" data-semantic-type=\"identifier\">t</mi></mrow>$$ t $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the number of distinct treatments appearing in the support sequences increases with the increase of the number of periods, <mjx-container aria-label=\"k\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"k\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/c09a2ac1-1512-49b7-8baa-c3acf0ec7390/sta4668-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"k\" data-semantic-type=\"identifier\">k</mi></mrow>$$ k $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, until <mjx-container aria-label=\"k greater than or equals t squared\" ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,4\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"k greater than or equals t squared\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,≥\" data-semantic-parent=\"5\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"2,3\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/7fd889b0-645a-4233-b6e1-cac91f2f92b4/sta4668-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,4\" data-semantic-content=\"1\" data-semantic-role=\"inequality\" data-semantic-speech=\"k greater than or equals t squared\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">k</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,≥\" data-semantic-parent=\"5\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\">≥</mo><msup data-semantic-=\"\" data-semantic-children=\"2,3\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi></mrow><mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow></msup></mrow>$$ k\\ge {t}^2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, in which case all <mjx-container aria-label=\"t\" ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"t\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/4b2da8a5-5d23-4833-9a71-556a4d4dd7b4/sta4668-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"t\" data-semantic-type=\"identifier\">t</mi></mrow>$$ t $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> treatments appear. The optimal design can be constructed from up to two representative sequences, within which each treatment appears in consecutive periods with equal or almost equal numbers of replications.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal designs for crossover model with partial interactions\",\"authors\":\"Futao Zhang, Pierre Druilhet, Xiangshun Kong\",\"doi\":\"10.1002/sta4.668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the universally optimal designs for estimating total effects under crossover models with partial interactions. We provide necessary and sufficient conditions for a symmetric design to be universally optimal, based on which algorithms can be used to derive optimal symmetric designs under any form of the within-block covariance matrix. To cope with the computational complexity of algorithms when the experimental scale is too large, we provide the analytical form of optimal designs under the type-H covariance matrix. We find that for a fixed number of treatments, say <mjx-container aria-label=\\\"t\\\" ctxtmenu_counter=\\\"0\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"t\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/c3669d78-641d-4172-958e-37ddc1934825/sta4668-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"t\\\" data-semantic-type=\\\"identifier\\\">t</mi></mrow>$$ t $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the number of distinct treatments appearing in the support sequences increases with the increase of the number of periods, <mjx-container aria-label=\\\"k\\\" ctxtmenu_counter=\\\"1\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"k\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/c09a2ac1-1512-49b7-8baa-c3acf0ec7390/sta4668-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"k\\\" data-semantic-type=\\\"identifier\\\">k</mi></mrow>$$ k $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, until <mjx-container aria-label=\\\"k greater than or equals t squared\\\" ctxtmenu_counter=\\\"2\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"k greater than or equals t squared\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≥\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"superscript\\\"><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/7fd889b0-645a-4233-b6e1-cac91f2f92b4/sta4668-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"k greater than or equals t squared\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">k</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,≥\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\">≥</mo><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"superscript\\\"><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">t</mi></mrow><mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></mrow></msup></mrow>$$ k\\\\ge {t}^2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, in which case all <mjx-container aria-label=\\\"t\\\" ctxtmenu_counter=\\\"3\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"t\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/4b2da8a5-5d23-4833-9a71-556a4d4dd7b4/sta4668-math-0004.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"t\\\" data-semantic-type=\\\"identifier\\\">t</mi></mrow>$$ t $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> treatments appear. The optimal design can be constructed from up to two representative sequences, within which each treatment appears in consecutive periods with equal or almost equal numbers of replications.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在具有部分交互作用的交叉模型下估计总效应的普遍最优设计。我们提供了对称设计成为普遍最优设计的必要条件和充分条件,在此基础上,可以使用算法推导出任何形式的块内协方差矩阵下的最优对称设计。为了应对实验规模过大时算法的计算复杂性,我们提供了 H 型协方差矩阵下最优设计的解析形式。我们发现,对于固定数量的处理(例如 t$$ t $$),支持序列中出现的不同处理的数量会随着周期数 k$$ k $$的增加而增加,直到 k≥t2$$ k\ge {t}^2 $$,在这种情况下,所有 t$$ t $$的处理都会出现。最佳设计最多可由两个代表性序列构成,其中每个处理在重复次数相等或几乎相等的连续时期内出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Optimal designs for crossover model with partial interactions
This paper studies the universally optimal designs for estimating total effects under crossover models with partial interactions. We provide necessary and sufficient conditions for a symmetric design to be universally optimal, based on which algorithms can be used to derive optimal symmetric designs under any form of the within-block covariance matrix. To cope with the computational complexity of algorithms when the experimental scale is too large, we provide the analytical form of optimal designs under the type-H covariance matrix. We find that for a fixed number of treatments, say , the number of distinct treatments appearing in the support sequences increases with the increase of the number of periods, , until , in which case all treatments appear. The optimal design can be constructed from up to two representative sequences, within which each treatment appears in consecutive periods with equal or almost equal numbers of replications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信