SL(n, ℝ) 邻接轨道上的测地线

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Brian Grajales, Lino Grama, Rafaela F. Prado
{"title":"SL(n, ℝ) 邻接轨道上的测地线","authors":"Brian Grajales, Lino Grama, Rafaela F. Prado","doi":"10.1142/s0219199724500019","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we examine the geodesics on adjoint orbits of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> that are equipped with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">SO</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-invariant metrics, where <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">SO</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the maximal compact subgroup. Our primary technique involves translating this problem into a geometric problem in the tangent bundle of certain <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">SO</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-flag manifolds and describing the geodesic equations with respect to the Sasaki metric on the tangent bundle. Additionally, we utilize tools from Lie Theory to obtain explicit descriptions of families of geodesics. We provide a detailed analysis of the case for <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geodesics on adjoint orbits of SL(n, ℝ)\",\"authors\":\"Brian Grajales, Lino Grama, Rafaela F. Prado\",\"doi\":\"10.1142/s0219199724500019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we examine the geodesics on adjoint orbits of <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">SL</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo>,</mo><mi>ℝ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> that are equipped with <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">SO</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-invariant metrics, where <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">SO</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is the maximal compact subgroup. Our primary technique involves translating this problem into a geometric problem in the tangent bundle of certain <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">SO</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-flag manifolds and describing the geodesic equations with respect to the Sasaki metric on the tangent bundle. Additionally, we utilize tools from Lie Theory to obtain explicit descriptions of families of geodesics. We provide a detailed analysis of the case for <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">SL</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>,</mo><mi>ℝ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了SL(n,ℝ)邻接轨道上的大地线,这些轨道配备了SO(n)不变度量,其中SO(n)是最大紧凑子群。我们的主要技术包括将这一问题转化为某些 SO(n)-flag 流形切线束中的几何问题,并描述切线束上有关佐佐木度量的大地方程。此外,我们还利用 Lie Theory 的工具获得了对大地方程组的明确描述。我们详细分析了 SL(2,ℝ) 的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesics on adjoint orbits of SL(n, ℝ)

In this paper, we examine the geodesics on adjoint orbits of SL(n,) that are equipped with SO(n)-invariant metrics, where SO(n) is the maximal compact subgroup. Our primary technique involves translating this problem into a geometric problem in the tangent bundle of certain SO(n)-flag manifolds and describing the geodesic equations with respect to the Sasaki metric on the tangent bundle. Additionally, we utilize tools from Lie Theory to obtain explicit descriptions of families of geodesics. We provide a detailed analysis of the case for SL(2,).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信