爱因斯坦 Lie 群、大地轨道流形和正则 Lie 子群

IF 1.2 2区 数学 Q1 MATHEMATICS
Nikolaos Panagiotis Souris
{"title":"爱因斯坦 Lie 群、大地轨道流形和正则 Lie 子群","authors":"Nikolaos Panagiotis Souris","doi":"10.1142/s0219199723500682","DOIUrl":null,"url":null,"abstract":"<p>We study the relation between two special classes of Riemannian Lie groups <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> with a left-invariant metric <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span>: The Einstein Lie groups, defined by the condition <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">Ric</mtext></mstyle></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mi>c</mi><mi>g</mi></math></span><span></span>, and the geodesic orbit Lie groups, defined by the property that any geodesic is the integral curve of a Killing vector field. The main results imply that extensive classes of compact simple Einstein Lie groups <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><mi>g</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are not geodesic orbit manifolds, thus providing large-scale answers to a relevant question of Nikonorov. Our approach involves studying and characterizing the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo stretchy=\"false\">×</mo><mi>K</mi></math></span><span></span>-invariant geodesic orbit metrics on Lie groups <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> for a wide class of subgroups <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span> that we call (weakly) regular. By-products of our work are structural and characterization results that are of independent interest for the classification problem of geodesic orbit manifolds.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"133 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Einstein Lie groups, geodesic orbit manifolds and regular Lie subgroups\",\"authors\":\"Nikolaos Panagiotis Souris\",\"doi\":\"10.1142/s0219199723500682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the relation between two special classes of Riemannian Lie groups <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi></math></span><span></span> with a left-invariant metric <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span>: The Einstein Lie groups, defined by the condition <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Ric</mtext></mstyle></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mi>c</mi><mi>g</mi></math></span><span></span>, and the geodesic orbit Lie groups, defined by the property that any geodesic is the integral curve of a Killing vector field. The main results imply that extensive classes of compact simple Einstein Lie groups <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo>,</mo><mi>g</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> are not geodesic orbit manifolds, thus providing large-scale answers to a relevant question of Nikonorov. Our approach involves studying and characterizing the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi><mo stretchy=\\\"false\\\">×</mo><mi>K</mi></math></span><span></span>-invariant geodesic orbit metrics on Lie groups <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi></math></span><span></span> for a wide class of subgroups <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span> that we call (weakly) regular. By-products of our work are structural and characterization results that are of independent interest for the classification problem of geodesic orbit manifolds.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500682\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500682","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有左不变度量 g 的两类特殊黎曼李群 G 之间的关系:由 Ricg=cg 条件定义的爱因斯坦李群和由任何大地线都是基林向量场的积分曲线这一性质定义的大地轨道李群。主要结果意味着大量紧凑简单爱因斯坦李群(G,g)不是大地轨道流形,从而为尼科诺罗夫的一个相关问题提供了大规模答案。我们的方法包括研究和表征我们称之为(弱)正则子群 K 的一大类 Lie 群 G 上的 G×K 不变大地轨道流形。我们工作的副产品是对大地轨道流形分类问题具有独立意义的结构和表征结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Einstein Lie groups, geodesic orbit manifolds and regular Lie subgroups

We study the relation between two special classes of Riemannian Lie groups G with a left-invariant metric g: The Einstein Lie groups, defined by the condition Ricg=cg, and the geodesic orbit Lie groups, defined by the property that any geodesic is the integral curve of a Killing vector field. The main results imply that extensive classes of compact simple Einstein Lie groups (G,g) are not geodesic orbit manifolds, thus providing large-scale answers to a relevant question of Nikonorov. Our approach involves studying and characterizing the G×K-invariant geodesic orbit metrics on Lie groups G for a wide class of subgroups K that we call (weakly) regular. By-products of our work are structural and characterization results that are of independent interest for the classification problem of geodesic orbit manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信