{"title":"新凯勒度量在格里菲斯负矢量束总空间和准富克斯空间上的曲率","authors":"Inkang Kim, Xueyuan Wan, Genkai Zhang","doi":"10.1142/s0219199723500591","DOIUrl":null,"url":null,"abstract":"<p>We study Kähler metrics on the total space of Griffiths negative holomorphic vector bundles over Kähler manifolds. As an application, we construct mapping class group invariant Kähler metrics on <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℬ</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"cal\">𝒮</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, the holomorphic tangent bundle of Teichmüller space of a closed surface <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi></math></span><span></span>. Consequently,we obtain a new mapping class group invariant Kähler metric on the quasi-Fuchsian space <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">QF</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, which extends the Weil–Petersson metric on the Teichmüller space <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">𝒯</mi><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo><mo>⊂</mo><mstyle><mtext mathvariant=\"normal\">QF</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. We also calculate its curvature and prove non-positivity for the curvature along the tautological directions.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"122 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature of new Kähler metrics on the total space of Griffiths negative vector bundle and quasi-Fuchsian space\",\"authors\":\"Inkang Kim, Xueyuan Wan, Genkai Zhang\",\"doi\":\"10.1142/s0219199723500591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study Kähler metrics on the total space of Griffiths negative holomorphic vector bundles over Kähler manifolds. As an application, we construct mapping class group invariant Kähler metrics on <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">ℬ</mi><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"cal\\\">𝒮</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, the holomorphic tangent bundle of Teichmüller space of a closed surface <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi></math></span><span></span>. Consequently,we obtain a new mapping class group invariant Kähler metric on the quasi-Fuchsian space <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">QF</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, which extends the Weil–Petersson metric on the Teichmüller space <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">𝒯</mi><mo stretchy=\\\"false\\\">(</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo><mo>⊂</mo><mstyle><mtext mathvariant=\\\"normal\\\">QF</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. We also calculate its curvature and prove non-positivity for the curvature along the tautological directions.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500591\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500591","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究凯勒流形上格里菲斯负全形向量束总空间的凯勒度量。作为应用,我们在闭合曲面 S 的 Teichmüller 空间的全形切线束ℬ(𝒮)上构造了映射类群不变的凯勒度量,从而在准富集空间 QF(S) 上得到了一个新的映射类群不变的凯勒度量,它扩展了 Teichmüller 空间 𝒯(S)⊂QF(S)上的魏尔-彼得森度量。我们还计算了它的曲率,并证明了曲率沿同调方向的非正性。
Curvature of new Kähler metrics on the total space of Griffiths negative vector bundle and quasi-Fuchsian space
We study Kähler metrics on the total space of Griffiths negative holomorphic vector bundles over Kähler manifolds. As an application, we construct mapping class group invariant Kähler metrics on , the holomorphic tangent bundle of Teichmüller space of a closed surface . Consequently,we obtain a new mapping class group invariant Kähler metric on the quasi-Fuchsian space , which extends the Weil–Petersson metric on the Teichmüller space . We also calculate its curvature and prove non-positivity for the curvature along the tautological directions.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.