Luis M. Briceño-Arias, Patrick L. Combettes, Francisco J. Silva
{"title":"非线性缩放透视函数","authors":"Luis M. Briceño-Arias, Patrick L. Combettes, Francisco J. Silva","doi":"10.1142/s0219199723500657","DOIUrl":null,"url":null,"abstract":"<p>The classical perspective of a function is a construction which transforms a convex function into one that is jointly convex with respect to an auxiliary scaling variable. Motivated by applications in several areas of applied analysis, we investigate an extension of this construct in which the scaling variable is replaced by a nonlinear term. Our construction is placed in the general context of locally convex spaces and it generates a lower semicontinuous convex function under broad assumptions on the underlying functions. Various convex-analytical properties are established and closed-form expressions are derived. Several applications are presented.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perspective functions with nonlinear scaling\",\"authors\":\"Luis M. Briceño-Arias, Patrick L. Combettes, Francisco J. Silva\",\"doi\":\"10.1142/s0219199723500657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The classical perspective of a function is a construction which transforms a convex function into one that is jointly convex with respect to an auxiliary scaling variable. Motivated by applications in several areas of applied analysis, we investigate an extension of this construct in which the scaling variable is replaced by a nonlinear term. Our construction is placed in the general context of locally convex spaces and it generates a lower semicontinuous convex function under broad assumptions on the underlying functions. Various convex-analytical properties are established and closed-form expressions are derived. Several applications are presented.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500657\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500657","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The classical perspective of a function is a construction which transforms a convex function into one that is jointly convex with respect to an auxiliary scaling variable. Motivated by applications in several areas of applied analysis, we investigate an extension of this construct in which the scaling variable is replaced by a nonlinear term. Our construction is placed in the general context of locally convex spaces and it generates a lower semicontinuous convex function under broad assumptions on the underlying functions. Various convex-analytical properties are established and closed-form expressions are derived. Several applications are presented.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.