{"title":"完整黎曼流形上的分数各向异性卡尔德龙问题","authors":"Mourad Choulli, El Maati Ouhabaz","doi":"10.1142/s0219199723500578","DOIUrl":null,"url":null,"abstract":"<p>We prove that the metric tensor <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span> of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace–Beltrami operator <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Δ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span>. Our result holds under the condition that the metric tensor <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span> is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"109 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional anisotropic Calderón problem on complete Riemannian manifolds\",\"authors\":\"Mourad Choulli, El Maati Ouhabaz\",\"doi\":\"10.1142/s0219199723500578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the metric tensor <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span> of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace–Beltrami operator <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"normal\\\">Δ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span>. Our result holds under the condition that the metric tensor <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span> is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500578\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500578","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,根据与拉普拉斯-贝尔特拉米算子的分数幂相关的局部源到解算子Δg 的知识,完全黎曼流形的度量张量 g 是唯一确定的,直到等度。我们的结果在已知任意小子域中的度量张量 g 的条件下成立。我们还考虑了封闭流形的情况,并对 [A.Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].
Fractional anisotropic Calderón problem on complete Riemannian manifolds
We prove that the metric tensor of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace–Beltrami operator . Our result holds under the condition that the metric tensor is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.