完整黎曼流形上的分数各向异性卡尔德龙问题

IF 1.2 2区 数学 Q1 MATHEMATICS
Mourad Choulli, El Maati Ouhabaz
{"title":"完整黎曼流形上的分数各向异性卡尔德龙问题","authors":"Mourad Choulli, El Maati Ouhabaz","doi":"10.1142/s0219199723500578","DOIUrl":null,"url":null,"abstract":"<p>We prove that the metric tensor <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span> of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace–Beltrami operator <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Δ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span>. Our result holds under the condition that the metric tensor <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span> is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"109 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional anisotropic Calderón problem on complete Riemannian manifolds\",\"authors\":\"Mourad Choulli, El Maati Ouhabaz\",\"doi\":\"10.1142/s0219199723500578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the metric tensor <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span> of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace–Beltrami operator <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"normal\\\">Δ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span>. Our result holds under the condition that the metric tensor <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span> is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500578\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500578","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,根据与拉普拉斯-贝尔特拉米算子的分数幂相关的局部源到解算子Δg 的知识,完全黎曼流形的度量张量 g 是唯一确定的,直到等度。我们的结果在已知任意小子域中的度量张量 g 的条件下成立。我们还考虑了封闭流形的情况,并对 [A.Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional anisotropic Calderón problem on complete Riemannian manifolds

We prove that the metric tensor g of a complete Riemannian manifold is uniquely determined, up to isometry, from the knowledge of a local source-to-solution operator associated with a fractional power of the Laplace–Beltrami operator Δg. Our result holds under the condition that the metric tensor g is known in an arbitrary small subdomain. We also consider the case of closed manifolds and provide an improvement of the main result in [A. Feizmohammadi, T. Ghosh, K. Krupchyk and G. Uhlmann, Fractional anisotropic Calderón problem on closed Riemannian manifolds, preprint (2021); arXiv:2112.03480].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信