Luigi Montoro, Berardino Sciunzi, Alessandro Trombetta
{"title":"双奇异准各向异性问题的比较原理","authors":"Luigi Montoro, Berardino Sciunzi, Alessandro Trombetta","doi":"10.1142/s0219199723500608","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove a comparison principle for sub-supersolutions to a singular quasilinear problem that involves the anisotropic Finsler operator <disp-formula-group><span><math altimg=\"eq-00001.gif\" display=\"block\" overflow=\"scroll\"><mrow><mo stretchy=\"false\">−</mo><msubsup><mrow><mi mathvariant=\"normal\">Δ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>H</mi></mrow></msubsup><mi>u</mi><mo>:</mo><mo>=</mo><mo stretchy=\"false\">−</mo><mspace width=\"-.17em\"></mspace><mo>div</mo><mo stretchy=\"false\">(</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mo>∇</mo><mi>u</mi><mo stretchy=\"false\">)</mo><mo>∇</mo><mi>H</mi><mo stretchy=\"false\">(</mo><mo>∇</mo><mi>u</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mo>.</mo></mrow></math></span><span></span></disp-formula-group> As a main consequence, we obtain a uniqueness result for weak solutions to the problem (℘). The proof is carried out also proving a sharp regularity result of the solutions up to the boundary. Our results are new even in the euclidean case.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"31 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison principle for a doubly singular quasilinear anisotropic problem\",\"authors\":\"Luigi Montoro, Berardino Sciunzi, Alessandro Trombetta\",\"doi\":\"10.1142/s0219199723500608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove a comparison principle for sub-supersolutions to a singular quasilinear problem that involves the anisotropic Finsler operator <disp-formula-group><span><math altimg=\\\"eq-00001.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mo stretchy=\\\"false\\\">−</mo><msubsup><mrow><mi mathvariant=\\\"normal\\\">Δ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>H</mi></mrow></msubsup><mi>u</mi><mo>:</mo><mo>=</mo><mo stretchy=\\\"false\\\">−</mo><mspace width=\\\"-.17em\\\"></mspace><mo>div</mo><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mo>∇</mo><mi>u</mi><mo stretchy=\\\"false\\\">)</mo><mo>∇</mo><mi>H</mi><mo stretchy=\\\"false\\\">(</mo><mo>∇</mo><mi>u</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mo>.</mo></mrow></math></span><span></span></disp-formula-group> As a main consequence, we obtain a uniqueness result for weak solutions to the problem (℘). The proof is carried out also proving a sharp regularity result of the solutions up to the boundary. Our results are new even in the euclidean case.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500608\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500608","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A comparison principle for a doubly singular quasilinear anisotropic problem
In this paper, we prove a comparison principle for sub-supersolutions to a singular quasilinear problem that involves the anisotropic Finsler operator As a main consequence, we obtain a uniqueness result for weak solutions to the problem (℘). The proof is carried out also proving a sharp regularity result of the solutions up to the boundary. Our results are new even in the euclidean case.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.