双奇异准各向异性问题的比较原理

IF 1.2 2区 数学 Q1 MATHEMATICS
Luigi Montoro, Berardino Sciunzi, Alessandro Trombetta
{"title":"双奇异准各向异性问题的比较原理","authors":"Luigi Montoro, Berardino Sciunzi, Alessandro Trombetta","doi":"10.1142/s0219199723500608","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove a comparison principle for sub-supersolutions to a singular quasilinear problem that involves the anisotropic Finsler operator <disp-formula-group><span><math altimg=\"eq-00001.gif\" display=\"block\" overflow=\"scroll\"><mrow><mo stretchy=\"false\">−</mo><msubsup><mrow><mi mathvariant=\"normal\">Δ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>H</mi></mrow></msubsup><mi>u</mi><mo>:</mo><mo>=</mo><mo stretchy=\"false\">−</mo><mspace width=\"-.17em\"></mspace><mo>div</mo><mo stretchy=\"false\">(</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mo>∇</mo><mi>u</mi><mo stretchy=\"false\">)</mo><mo>∇</mo><mi>H</mi><mo stretchy=\"false\">(</mo><mo>∇</mo><mi>u</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mo>.</mo></mrow></math></span><span></span></disp-formula-group> As a main consequence, we obtain a uniqueness result for weak solutions to the problem (℘). The proof is carried out also proving a sharp regularity result of the solutions up to the boundary. Our results are new even in the euclidean case.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"31 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison principle for a doubly singular quasilinear anisotropic problem\",\"authors\":\"Luigi Montoro, Berardino Sciunzi, Alessandro Trombetta\",\"doi\":\"10.1142/s0219199723500608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove a comparison principle for sub-supersolutions to a singular quasilinear problem that involves the anisotropic Finsler operator <disp-formula-group><span><math altimg=\\\"eq-00001.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mo stretchy=\\\"false\\\">−</mo><msubsup><mrow><mi mathvariant=\\\"normal\\\">Δ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>H</mi></mrow></msubsup><mi>u</mi><mo>:</mo><mo>=</mo><mo stretchy=\\\"false\\\">−</mo><mspace width=\\\"-.17em\\\"></mspace><mo>div</mo><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mo>∇</mo><mi>u</mi><mo stretchy=\\\"false\\\">)</mo><mo>∇</mo><mi>H</mi><mo stretchy=\\\"false\\\">(</mo><mo>∇</mo><mi>u</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mo>.</mo></mrow></math></span><span></span></disp-formula-group> As a main consequence, we obtain a uniqueness result for weak solutions to the problem (℘). The proof is carried out also proving a sharp regularity result of the solutions up to the boundary. Our results are new even in the euclidean case.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500608\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500608","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了奇异准线性问题的子上解的比较原理,该问题涉及各向异性芬斯勒算子-ΔpHu:=-div(Hp-1(∇u)∇H(∇u))。作为主要结果,我们得到了问题 (℘) 弱解的唯一性结果。在证明过程中,我们还证明了直到边界的解的尖锐正则性结果。即使在欧几里得情况下,我们的结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison principle for a doubly singular quasilinear anisotropic problem

In this paper, we prove a comparison principle for sub-supersolutions to a singular quasilinear problem that involves the anisotropic Finsler operator ΔpHu:=div(Hp1(u)H(u)). As a main consequence, we obtain a uniqueness result for weak solutions to the problem (℘). The proof is carried out also proving a sharp regularity result of the solutions up to the boundary. Our results are new even in the euclidean case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信