{"title":"贝尔沙德斯基-波利亚科夫代数的权重模块分类","authors":"Dražen Adamović, Kazuya Kawasetsu, David Ridout","doi":"10.1142/s0219199723500633","DOIUrl":null,"url":null,"abstract":"<p>The Bershadsky–Polyakov algebras are the subregular quantum Hamiltonian reductions of the affine vertex operator algebras associated with <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔰</mi><mi>𝔩</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span>. In (D. Adamović, K. Kawasetsu and D. Ridout, A realisation of the Bershadsky–Polyakov algebras and their relaxed modules, <i>Lett. Math. Phys.</i><b>111</b> (2021) 38, arXiv:2007.00396 [math.QA]), we realized these algebras in terms of the regular reduction, Zamolodchikov’s <i>W</i><sub>3</sub>-algebra, and an isotropic lattice vertex operator algebra. We also proved that a natural construction of relaxed highest-weight Bershadsky–Polyakov modules has the property that the result is generically irreducible. Here, we prove that this construction, when combined with spectral flow twists, gives a complete set of irreducible weight modules whose weight spaces are finite-dimensional. This gives a simple independent proof of the main classification theorem of (Z. Fehily, K. Kawasetsu and D. Ridout, Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras, <i>Comm. Math. Phys.</i><b>385</b> (2021) 859–904, arXiv:2007.03917 [math.RT]) for nondegenerate admissible levels and extends this classification to a category of weight modules. We also deduce the classification for the nonadmissible level <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"sans-serif\"><mi>k</mi></mstyle><mo>=</mo><mo stretchy=\"false\">−</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span><span></span>, which is new.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"64 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight module classifications for Bershadsky–Polyakov algebras\",\"authors\":\"Dražen Adamović, Kazuya Kawasetsu, David Ridout\",\"doi\":\"10.1142/s0219199723500633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Bershadsky–Polyakov algebras are the subregular quantum Hamiltonian reductions of the affine vertex operator algebras associated with <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔰</mi><mi>𝔩</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span>. In (D. Adamović, K. Kawasetsu and D. Ridout, A realisation of the Bershadsky–Polyakov algebras and their relaxed modules, <i>Lett. Math. Phys.</i><b>111</b> (2021) 38, arXiv:2007.00396 [math.QA]), we realized these algebras in terms of the regular reduction, Zamolodchikov’s <i>W</i><sub>3</sub>-algebra, and an isotropic lattice vertex operator algebra. We also proved that a natural construction of relaxed highest-weight Bershadsky–Polyakov modules has the property that the result is generically irreducible. Here, we prove that this construction, when combined with spectral flow twists, gives a complete set of irreducible weight modules whose weight spaces are finite-dimensional. This gives a simple independent proof of the main classification theorem of (Z. Fehily, K. Kawasetsu and D. Ridout, Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras, <i>Comm. Math. Phys.</i><b>385</b> (2021) 859–904, arXiv:2007.03917 [math.RT]) for nondegenerate admissible levels and extends this classification to a category of weight modules. We also deduce the classification for the nonadmissible level <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"sans-serif\\\"><mi>k</mi></mstyle><mo>=</mo><mo stretchy=\\\"false\\\">−</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span><span></span>, which is new.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500633\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500633","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
伯沙德斯基-波利亚科夫代数是与𝔰𝔩3 相关的仿射顶点算子代数的亚规则量子哈密顿还原。在 (D. Adamović、K. Kawasetsu 和 D. Ridout, A realisation of the Bershadsky-Polyakov algebras and their relaxed modules, Lett.Math.Phys.111(2021)38,arXiv:2007.00396 [math.QA]),我们用正则还原、扎莫洛奇科夫的 W3-代数和等向晶格顶点算子代数实现了这些代数。我们还证明了松弛的最高权布尔夏德斯基-波利亚科夫模块的自然构造具有结果一般不可还原的性质。在这里,我们证明了当这种构造与谱流捻合相结合时,可以得到一组完整的不可还原权重模块,其权重空间是有限维的。这给出了 (Z. Fehily, K. Kawasetsu and D. Ridout, Classifying relaxed highest-weight modules for admissible-level Bershadsky-Polyakov algebras, Comm. Math.Math.Phys.385(2021)859-904,arXiv:2007.03917 [math.RT]),并将此分类扩展到权重模块类别。我们还推导出了新的非可容许级 k=-73 的分类。
Weight module classifications for Bershadsky–Polyakov algebras
The Bershadsky–Polyakov algebras are the subregular quantum Hamiltonian reductions of the affine vertex operator algebras associated with . In (D. Adamović, K. Kawasetsu and D. Ridout, A realisation of the Bershadsky–Polyakov algebras and their relaxed modules, Lett. Math. Phys.111 (2021) 38, arXiv:2007.00396 [math.QA]), we realized these algebras in terms of the regular reduction, Zamolodchikov’s W3-algebra, and an isotropic lattice vertex operator algebra. We also proved that a natural construction of relaxed highest-weight Bershadsky–Polyakov modules has the property that the result is generically irreducible. Here, we prove that this construction, when combined with spectral flow twists, gives a complete set of irreducible weight modules whose weight spaces are finite-dimensional. This gives a simple independent proof of the main classification theorem of (Z. Fehily, K. Kawasetsu and D. Ridout, Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras, Comm. Math. Phys.385 (2021) 859–904, arXiv:2007.03917 [math.RT]) for nondegenerate admissible levels and extends this classification to a category of weight modules. We also deduce the classification for the nonadmissible level , which is new.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.