贝尔沙德斯基-波利亚科夫代数的权重模块分类

IF 1.2 2区 数学 Q1 MATHEMATICS
Dražen Adamović, Kazuya Kawasetsu, David Ridout
{"title":"贝尔沙德斯基-波利亚科夫代数的权重模块分类","authors":"Dražen Adamović, Kazuya Kawasetsu, David Ridout","doi":"10.1142/s0219199723500633","DOIUrl":null,"url":null,"abstract":"<p>The Bershadsky–Polyakov algebras are the subregular quantum Hamiltonian reductions of the affine vertex operator algebras associated with <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔰</mi><mi>𝔩</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span>. In (D. Adamović, K. Kawasetsu and D. Ridout, A realisation of the Bershadsky–Polyakov algebras and their relaxed modules, <i>Lett. Math. Phys.</i><b>111</b> (2021) 38, arXiv:2007.00396 [math.QA]), we realized these algebras in terms of the regular reduction, Zamolodchikov’s <i>W</i><sub>3</sub>-algebra, and an isotropic lattice vertex operator algebra. We also proved that a natural construction of relaxed highest-weight Bershadsky–Polyakov modules has the property that the result is generically irreducible. Here, we prove that this construction, when combined with spectral flow twists, gives a complete set of irreducible weight modules whose weight spaces are finite-dimensional. This gives a simple independent proof of the main classification theorem of (Z. Fehily, K. Kawasetsu and D. Ridout, Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras, <i>Comm. Math. Phys.</i><b>385</b> (2021) 859–904, arXiv:2007.03917 [math.RT]) for nondegenerate admissible levels and extends this classification to a category of weight modules. We also deduce the classification for the nonadmissible level <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mstyle mathvariant=\"sans-serif\"><mi>k</mi></mstyle><mo>=</mo><mo stretchy=\"false\">−</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span><span></span>, which is new.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"64 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight module classifications for Bershadsky–Polyakov algebras\",\"authors\":\"Dražen Adamović, Kazuya Kawasetsu, David Ridout\",\"doi\":\"10.1142/s0219199723500633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Bershadsky–Polyakov algebras are the subregular quantum Hamiltonian reductions of the affine vertex operator algebras associated with <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔰</mi><mi>𝔩</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span><span></span>. In (D. Adamović, K. Kawasetsu and D. Ridout, A realisation of the Bershadsky–Polyakov algebras and their relaxed modules, <i>Lett. Math. Phys.</i><b>111</b> (2021) 38, arXiv:2007.00396 [math.QA]), we realized these algebras in terms of the regular reduction, Zamolodchikov’s <i>W</i><sub>3</sub>-algebra, and an isotropic lattice vertex operator algebra. We also proved that a natural construction of relaxed highest-weight Bershadsky–Polyakov modules has the property that the result is generically irreducible. Here, we prove that this construction, when combined with spectral flow twists, gives a complete set of irreducible weight modules whose weight spaces are finite-dimensional. This gives a simple independent proof of the main classification theorem of (Z. Fehily, K. Kawasetsu and D. Ridout, Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras, <i>Comm. Math. Phys.</i><b>385</b> (2021) 859–904, arXiv:2007.03917 [math.RT]) for nondegenerate admissible levels and extends this classification to a category of weight modules. We also deduce the classification for the nonadmissible level <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle mathvariant=\\\"sans-serif\\\"><mi>k</mi></mstyle><mo>=</mo><mo stretchy=\\\"false\\\">−</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span><span></span>, which is new.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500633\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500633","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

伯沙德斯基-波利亚科夫代数是与𝔰𝔩3 相关的仿射顶点算子代数的亚规则量子哈密顿还原。在 (D. Adamović、K. Kawasetsu 和 D. Ridout, A realisation of the Bershadsky-Polyakov algebras and their relaxed modules, Lett.Math.Phys.111(2021)38,arXiv:2007.00396 [math.QA]),我们用正则还原、扎莫洛奇科夫的 W3-代数和等向晶格顶点算子代数实现了这些代数。我们还证明了松弛的最高权布尔夏德斯基-波利亚科夫模块的自然构造具有结果一般不可还原的性质。在这里,我们证明了当这种构造与谱流捻合相结合时,可以得到一组完整的不可还原权重模块,其权重空间是有限维的。这给出了 (Z. Fehily, K. Kawasetsu and D. Ridout, Classifying relaxed highest-weight modules for admissible-level Bershadsky-Polyakov algebras, Comm. Math.Math.Phys.385(2021)859-904,arXiv:2007.03917 [math.RT]),并将此分类扩展到权重模块类别。我们还推导出了新的非可容许级 k=-73 的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weight module classifications for Bershadsky–Polyakov algebras

The Bershadsky–Polyakov algebras are the subregular quantum Hamiltonian reductions of the affine vertex operator algebras associated with 𝔰𝔩3. In (D. Adamović, K. Kawasetsu and D. Ridout, A realisation of the Bershadsky–Polyakov algebras and their relaxed modules, Lett. Math. Phys.111 (2021) 38, arXiv:2007.00396 [math.QA]), we realized these algebras in terms of the regular reduction, Zamolodchikov’s W3-algebra, and an isotropic lattice vertex operator algebra. We also proved that a natural construction of relaxed highest-weight Bershadsky–Polyakov modules has the property that the result is generically irreducible. Here, we prove that this construction, when combined with spectral flow twists, gives a complete set of irreducible weight modules whose weight spaces are finite-dimensional. This gives a simple independent proof of the main classification theorem of (Z. Fehily, K. Kawasetsu and D. Ridout, Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras, Comm. Math. Phys.385 (2021) 859–904, arXiv:2007.03917 [math.RT]) for nondegenerate admissible levels and extends this classification to a category of weight modules. We also deduce the classification for the nonadmissible level k=73, which is new.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信