{"title":"哈特定理的代数版本","authors":"Marcin Bilski, Jacek Bochnak, Wojciech Kucharz","doi":"10.1142/s0219199723500669","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi></math></span><span></span> be an uncountable field of characteristic <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn></math></span><span></span>. For a given function <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo>:</mo><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>𝕂</mi></math></span><span></span>, with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we prove that <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> is regular if and only if the restriction <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span><span></span> is a regular function for every algebraic curve <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> in <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> which is either an affine line or is isomorphic to a plane curve in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> defined by the equation <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">−</mo><msup><mrow><mi>Y</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>=</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo><</mo><mi>q</mi></math></span><span></span> are prime numbers. We also show that regularity of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> can be verified on other algebraic curves in <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with desired geometric properties. Furthermore, if the field <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi></math></span><span></span> is not algebraically closed, we construct a <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi></math></span><span></span>-valued function on <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> that is not regular, but all its restrictions to nonsingular algebraic curves in <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> are regular functions.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"278 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic versions of Hartogs’ theorem\",\"authors\":\"Marcin Bilski, Jacek Bochnak, Wojciech Kucharz\",\"doi\":\"10.1142/s0219199723500669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕂</mi></math></span><span></span> be an uncountable field of characteristic <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>0</mn></math></span><span></span>. For a given function <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo>:</mo><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>𝕂</mi></math></span><span></span>, with <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we prove that <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi></math></span><span></span> is regular if and only if the restriction <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span><span></span> is a regular function for every algebraic curve <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi></math></span><span></span> in <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> which is either an affine line or is isomorphic to a plane curve in <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> defined by the equation <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\\\"false\\\">−</mo><msup><mrow><mi>Y</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>=</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi><mo><</mo><mi>q</mi></math></span><span></span> are prime numbers. We also show that regularity of <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi></math></span><span></span> can be verified on other algebraic curves in <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with desired geometric properties. Furthermore, if the field <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕂</mi></math></span><span></span> is not algebraically closed, we construct a <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕂</mi></math></span><span></span>-valued function on <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> that is not regular, but all its restrictions to nonsingular algebraic curves in <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> are regular functions.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"278 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500669\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500669","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let be an uncountable field of characteristic . For a given function , with , we prove that is regular if and only if the restriction is a regular function for every algebraic curve in which is either an affine line or is isomorphic to a plane curve in defined by the equation , where are prime numbers. We also show that regularity of can be verified on other algebraic curves in with desired geometric properties. Furthermore, if the field is not algebraically closed, we construct a -valued function on that is not regular, but all its restrictions to nonsingular algebraic curves in are regular functions.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.