哈特定理的代数版本

IF 1.2 2区 数学 Q1 MATHEMATICS
Marcin Bilski, Jacek Bochnak, Wojciech Kucharz
{"title":"哈特定理的代数版本","authors":"Marcin Bilski, Jacek Bochnak, Wojciech Kucharz","doi":"10.1142/s0219199723500669","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi></math></span><span></span> be an uncountable field of characteristic <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn></math></span><span></span>. For a given function <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo>:</mo><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>𝕂</mi></math></span><span></span>, with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we prove that <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> is regular if and only if the restriction <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span><span></span> is a regular function for every algebraic curve <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> in <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> which is either an affine line or is isomorphic to a plane curve in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> defined by the equation <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">−</mo><msup><mrow><mi>Y</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>=</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>&lt;</mo><mi>q</mi></math></span><span></span> are prime numbers. We also show that regularity of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> can be verified on other algebraic curves in <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with desired geometric properties. Furthermore, if the field <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi></math></span><span></span> is not algebraically closed, we construct a <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi></math></span><span></span>-valued function on <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> that is not regular, but all its restrictions to nonsingular algebraic curves in <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> are regular functions.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"278 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic versions of Hartogs’ theorem\",\"authors\":\"Marcin Bilski, Jacek Bochnak, Wojciech Kucharz\",\"doi\":\"10.1142/s0219199723500669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕂</mi></math></span><span></span> be an uncountable field of characteristic <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>0</mn></math></span><span></span>. For a given function <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo>:</mo><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>𝕂</mi></math></span><span></span>, with <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we prove that <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi></math></span><span></span> is regular if and only if the restriction <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span><span></span> is a regular function for every algebraic curve <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi></math></span><span></span> in <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> which is either an affine line or is isomorphic to a plane curve in <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> defined by the equation <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\\\"false\\\">−</mo><msup><mrow><mi>Y</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>=</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi><mo>&lt;</mo><mi>q</mi></math></span><span></span> are prime numbers. We also show that regularity of <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi></math></span><span></span> can be verified on other algebraic curves in <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with desired geometric properties. Furthermore, if the field <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕂</mi></math></span><span></span> is not algebraically closed, we construct a <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕂</mi></math></span><span></span>-valued function on <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> that is not regular, but all its restrictions to nonsingular algebraic curves in <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕂</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> are regular functions.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"278 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500669\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500669","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设𝕂 是特征为 0 的不可数域。对于给定的函数 f:𝕂n→𝕂,n≥2,我们证明当且仅当对于𝕂n 中的每一条代数曲线 C,其限制条件 f|C 都是正则函数时,f 才是正则的。C 要么是仿射直线,要么与方程 Xp-Yq=0 所定义的𝕂2 中的平面曲线同构,其中 p<q 是素数。我们还证明,f 的正则性可以在𝕂n 中其他具有所需几何性质的代数曲线上得到验证。此外,如果域 𝕂 不是代数闭包的,我们在 𝕂n 上构造了一个 𝕂 值函数,它不是正则函数,但它对𝕂n 中非共格代数曲线的所有限制都是正则函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic versions of Hartogs’ theorem

Let 𝕂 be an uncountable field of characteristic 0. For a given function f:𝕂n𝕂, with n2, we prove that f is regular if and only if the restriction f|C is a regular function for every algebraic curve C in 𝕂n which is either an affine line or is isomorphic to a plane curve in 𝕂2 defined by the equation XpYq=0, where p<q are prime numbers. We also show that regularity of f can be verified on other algebraic curves in 𝕂n with desired geometric properties. Furthermore, if the field 𝕂 is not algebraically closed, we construct a 𝕂-valued function on 𝕂n that is not regular, but all its restrictions to nonsingular algebraic curves in 𝕂n are regular functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信