{"title":"简单多边形中近似最远邻查询的核心集","authors":"Mark de Berg, Leonidas Theocharous","doi":"arxiv-2403.04513","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set\nof $n$ points inside $\\mathcal{P}$. We prove that there exists, for any\n$\\varepsilon>0$, a set $\\mathcal{C} \\subset P$ of size $O(1/\\varepsilon^2)$\nsuch that the following holds: for any query point $q$ inside the polygon\n$\\mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in\n$\\mathcal{C}$ is at least $1-\\varepsilon$ times the geodesic distance to its\nfurther neighbor in $P$. Thus the set $\\mathcal{C}$ can be used for answering\n$\\varepsilon$-approximate furthest-neighbor queries with a data structure whose\nstorage requirement is independent of the size of $P$. The coreset can be\nconstructed in $O\\left(\\frac{1}{\\varepsilon} \\left( n\\log(1/\\varepsilon) +\n(n+m)\\log(n+m)\\right) \\right)$ time.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Coreset for Approximate Furthest-Neighbor Queries in a Simple Polygon\",\"authors\":\"Mark de Berg, Leonidas Theocharous\",\"doi\":\"arxiv-2403.04513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set\\nof $n$ points inside $\\\\mathcal{P}$. We prove that there exists, for any\\n$\\\\varepsilon>0$, a set $\\\\mathcal{C} \\\\subset P$ of size $O(1/\\\\varepsilon^2)$\\nsuch that the following holds: for any query point $q$ inside the polygon\\n$\\\\mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in\\n$\\\\mathcal{C}$ is at least $1-\\\\varepsilon$ times the geodesic distance to its\\nfurther neighbor in $P$. Thus the set $\\\\mathcal{C}$ can be used for answering\\n$\\\\varepsilon$-approximate furthest-neighbor queries with a data structure whose\\nstorage requirement is independent of the size of $P$. The coreset can be\\nconstructed in $O\\\\left(\\\\frac{1}{\\\\varepsilon} \\\\left( n\\\\log(1/\\\\varepsilon) +\\n(n+m)\\\\log(n+m)\\\\right) \\\\right)$ time.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.04513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.04513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Coreset for Approximate Furthest-Neighbor Queries in a Simple Polygon
Let $\mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set
of $n$ points inside $\mathcal{P}$. We prove that there exists, for any
$\varepsilon>0$, a set $\mathcal{C} \subset P$ of size $O(1/\varepsilon^2)$
such that the following holds: for any query point $q$ inside the polygon
$\mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in
$\mathcal{C}$ is at least $1-\varepsilon$ times the geodesic distance to its
further neighbor in $P$. Thus the set $\mathcal{C}$ can be used for answering
$\varepsilon$-approximate furthest-neighbor queries with a data structure whose
storage requirement is independent of the size of $P$. The coreset can be
constructed in $O\left(\frac{1}{\varepsilon} \left( n\log(1/\varepsilon) +
(n+m)\log(n+m)\right) \right)$ time.