关于 Gyárfás-Sumner 猜想的说明

IF 0.6 4区 数学 Q3 MATHEMATICS
Tung Nguyen, Alex Scott, Paul Seymour
{"title":"关于 Gyárfás-Sumner 猜想的说明","authors":"Tung Nguyen, Alex Scott, Paul Seymour","doi":"10.1007/s00373-024-02754-z","DOIUrl":null,"url":null,"abstract":"<p>The Gyárfás–Sumner conjecture says that for every tree <i>T</i> and every integer <span>\\(t\\ge 1\\)</span>, if <i>G</i> is a graph with no clique of size <i>t</i> and with sufficiently large chromatic number, then <i>G</i> contains an induced subgraph isomorphic to <i>T</i>. This remains open, but we prove that under the same hypotheses, <i>G</i> contains a subgraph <i>H</i> isomorphic to <i>T</i> that is “path-induced”; that is, for some distinguished vertex <i>r</i>, every path of <i>H</i> with one end <i>r</i> is an induced path of <i>G</i>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"37 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on the Gyárfás–Sumner Conjecture\",\"authors\":\"Tung Nguyen, Alex Scott, Paul Seymour\",\"doi\":\"10.1007/s00373-024-02754-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Gyárfás–Sumner conjecture says that for every tree <i>T</i> and every integer <span>\\\\(t\\\\ge 1\\\\)</span>, if <i>G</i> is a graph with no clique of size <i>t</i> and with sufficiently large chromatic number, then <i>G</i> contains an induced subgraph isomorphic to <i>T</i>. This remains open, but we prove that under the same hypotheses, <i>G</i> contains a subgraph <i>H</i> isomorphic to <i>T</i> that is “path-induced”; that is, for some distinguished vertex <i>r</i>, every path of <i>H</i> with one end <i>r</i> is an induced path of <i>G</i>.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02754-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02754-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Gyárfás-Sumner 猜想说,对于每棵树 T 和每个整数 \(t\ge 1\),如果 G 是一个没有大小为 t 的簇且色度数足够大的图,那么 G 包含一个与 T 同构的诱导子图。这一点仍未解决,但我们证明,在同样的假设下,G 包含一个与 T 同构的子图 H,它是 "路径诱导 "的;也就是说,对于某个区分顶点 r,H 的每条路径的一个端点 r 都是 G 的一条诱导路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Gyárfás–Sumner Conjecture

The Gyárfás–Sumner conjecture says that for every tree T and every integer \(t\ge 1\), if G is a graph with no clique of size t and with sufficiently large chromatic number, then G contains an induced subgraph isomorphic to T. This remains open, but we prove that under the same hypotheses, G contains a subgraph H isomorphic to T that is “path-induced”; that is, for some distinguished vertex r, every path of H with one end r is an induced path of G.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信