Yamin Song, Vladimir Krsjak, Vladimir Slugen, Radek Novotny, Stanislav Sojak, Michal Novak, Julius Dekan, Xingzhong Cao, Jarmila Degmova
{"title":"利用慢正电子法研究 310S 奥氏体不锈钢不同表面处理对超临界水中腐蚀行为的影响","authors":"Yamin Song, Vladimir Krsjak, Vladimir Slugen, Radek Novotny, Stanislav Sojak, Michal Novak, Julius Dekan, Xingzhong Cao, Jarmila Degmova","doi":"10.1002/maco.202313999","DOIUrl":null,"url":null,"abstract":"<p>The corrosion behavior of 310S austenitic stainless steel, subjected to different surface treatments machined (MA), sandblasting (SB), and polishing (PO), was exposed to a 550°C supercritical water (SCW) environment. The aged samples were analyzed using variable-energy slow positron beam techniques. The obtained results revealed that the plastic deformation of the near-surface region of the MA and SB samples was substantially recovered in the SCW conditions. At least two distinct oxide layers formed, and the oxidation process created a Fe/Cr depletion zone in the inner layer. Various surface treatments, however, led to different corrosion profiles. The depth profile of slow positron beam characterization suggests that significant residual stress and deformation zones on the surfaces of the sandblasted samples probably provided a diffusion path for the oxidation of the 310S. Only the SB samples exhibited a negative weight change after SCW exposure. At the same time, the SB samples showed the highest concentration of the positron traps in this region, which was explained by open-volume defects associated with the microcracks introduced by sandblasting.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 7","pages":"856-866"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202313999","citationCount":"0","resultStr":"{\"title\":\"The effect of different surface treatments of 310S austenitic stainless steel on the corrosion behavior in supercritical water using slow positron methods\",\"authors\":\"Yamin Song, Vladimir Krsjak, Vladimir Slugen, Radek Novotny, Stanislav Sojak, Michal Novak, Julius Dekan, Xingzhong Cao, Jarmila Degmova\",\"doi\":\"10.1002/maco.202313999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The corrosion behavior of 310S austenitic stainless steel, subjected to different surface treatments machined (MA), sandblasting (SB), and polishing (PO), was exposed to a 550°C supercritical water (SCW) environment. The aged samples were analyzed using variable-energy slow positron beam techniques. The obtained results revealed that the plastic deformation of the near-surface region of the MA and SB samples was substantially recovered in the SCW conditions. At least two distinct oxide layers formed, and the oxidation process created a Fe/Cr depletion zone in the inner layer. Various surface treatments, however, led to different corrosion profiles. The depth profile of slow positron beam characterization suggests that significant residual stress and deformation zones on the surfaces of the sandblasted samples probably provided a diffusion path for the oxidation of the 310S. Only the SB samples exhibited a negative weight change after SCW exposure. At the same time, the SB samples showed the highest concentration of the positron traps in this region, which was explained by open-volume defects associated with the microcracks introduced by sandblasting.</p>\",\"PeriodicalId\":18225,\"journal\":{\"name\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"volume\":\"75 7\",\"pages\":\"856-866\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202313999\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/maco.202313999\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.202313999","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The effect of different surface treatments of 310S austenitic stainless steel on the corrosion behavior in supercritical water using slow positron methods
The corrosion behavior of 310S austenitic stainless steel, subjected to different surface treatments machined (MA), sandblasting (SB), and polishing (PO), was exposed to a 550°C supercritical water (SCW) environment. The aged samples were analyzed using variable-energy slow positron beam techniques. The obtained results revealed that the plastic deformation of the near-surface region of the MA and SB samples was substantially recovered in the SCW conditions. At least two distinct oxide layers formed, and the oxidation process created a Fe/Cr depletion zone in the inner layer. Various surface treatments, however, led to different corrosion profiles. The depth profile of slow positron beam characterization suggests that significant residual stress and deformation zones on the surfaces of the sandblasted samples probably provided a diffusion path for the oxidation of the 310S. Only the SB samples exhibited a negative weight change after SCW exposure. At the same time, the SB samples showed the highest concentration of the positron traps in this region, which was explained by open-volume defects associated with the microcracks introduced by sandblasting.
期刊介绍:
Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention.
Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.