{"title":"分数微积分中的抽象代数构造:具有半群性质的参数化族","authors":"Arran Fernandez","doi":"10.1007/s11785-024-01493-6","DOIUrl":null,"url":null,"abstract":"<p>What structure can be placed on the burgeoning field of fractional calculus with assorted kernel functions? This question has been addressed by the introduction of various general kernels, none of which has both a fractional order parameter and a clear inversion relation. Here, we use ideas from abstract algebra to construct families of fractional integral and derivative operators, parametrised by a real or complex variable playing the role of the order. These have the typical behaviour expected of fractional calculus operators, such as semigroup and inversion relations, which allow fractional differential equations to be solved using operational calculus in this general setting, including all types of fractional calculus with semigroup properties as special cases.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"36 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract Algebraic Construction in Fractional Calculus: Parametrised Families with Semigroup Properties\",\"authors\":\"Arran Fernandez\",\"doi\":\"10.1007/s11785-024-01493-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>What structure can be placed on the burgeoning field of fractional calculus with assorted kernel functions? This question has been addressed by the introduction of various general kernels, none of which has both a fractional order parameter and a clear inversion relation. Here, we use ideas from abstract algebra to construct families of fractional integral and derivative operators, parametrised by a real or complex variable playing the role of the order. These have the typical behaviour expected of fractional calculus operators, such as semigroup and inversion relations, which allow fractional differential equations to be solved using operational calculus in this general setting, including all types of fractional calculus with semigroup properties as special cases.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01493-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01493-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Algebraic Construction in Fractional Calculus: Parametrised Families with Semigroup Properties
What structure can be placed on the burgeoning field of fractional calculus with assorted kernel functions? This question has been addressed by the introduction of various general kernels, none of which has both a fractional order parameter and a clear inversion relation. Here, we use ideas from abstract algebra to construct families of fractional integral and derivative operators, parametrised by a real or complex variable playing the role of the order. These have the typical behaviour expected of fractional calculus operators, such as semigroup and inversion relations, which allow fractional differential equations to be solved using operational calculus in this general setting, including all types of fractional calculus with semigroup properties as special cases.
期刊介绍:
Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.