分数微积分中的抽象代数构造:具有半群性质的参数化族

IF 0.7 4区 数学 Q2 MATHEMATICS
Arran Fernandez
{"title":"分数微积分中的抽象代数构造:具有半群性质的参数化族","authors":"Arran Fernandez","doi":"10.1007/s11785-024-01493-6","DOIUrl":null,"url":null,"abstract":"<p>What structure can be placed on the burgeoning field of fractional calculus with assorted kernel functions? This question has been addressed by the introduction of various general kernels, none of which has both a fractional order parameter and a clear inversion relation. Here, we use ideas from abstract algebra to construct families of fractional integral and derivative operators, parametrised by a real or complex variable playing the role of the order. These have the typical behaviour expected of fractional calculus operators, such as semigroup and inversion relations, which allow fractional differential equations to be solved using operational calculus in this general setting, including all types of fractional calculus with semigroup properties as special cases.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"36 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract Algebraic Construction in Fractional Calculus: Parametrised Families with Semigroup Properties\",\"authors\":\"Arran Fernandez\",\"doi\":\"10.1007/s11785-024-01493-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>What structure can be placed on the burgeoning field of fractional calculus with assorted kernel functions? This question has been addressed by the introduction of various general kernels, none of which has both a fractional order parameter and a clear inversion relation. Here, we use ideas from abstract algebra to construct families of fractional integral and derivative operators, parametrised by a real or complex variable playing the role of the order. These have the typical behaviour expected of fractional calculus operators, such as semigroup and inversion relations, which allow fractional differential equations to be solved using operational calculus in this general setting, including all types of fractional calculus with semigroup properties as special cases.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01493-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01493-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用各种内核函数的分式微积分领域方兴未艾,它的结构如何?为了解决这个问题,我们引入了各种一般核函数,但没有一个核函数同时具有分数阶参数和明确的反演关系。在这里,我们利用抽象代数的思想,构建了分数积分和导数算子族,由一个实变量或复变量作为阶参数。这些算子具有分数微积分算子应有的典型行为,如半群和反转关系,这使得分数微分方程可以在这种一般情况下使用运算微积分求解,包括作为特例的具有半群性质的所有类型的分数微积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstract Algebraic Construction in Fractional Calculus: Parametrised Families with Semigroup Properties

What structure can be placed on the burgeoning field of fractional calculus with assorted kernel functions? This question has been addressed by the introduction of various general kernels, none of which has both a fractional order parameter and a clear inversion relation. Here, we use ideas from abstract algebra to construct families of fractional integral and derivative operators, parametrised by a real or complex variable playing the role of the order. These have the typical behaviour expected of fractional calculus operators, such as semigroup and inversion relations, which allow fractional differential equations to be solved using operational calculus in this general setting, including all types of fractional calculus with semigroup properties as special cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信