论与混合多项式相关的 3 球中的实代数联系

IF 1.2 3区 数学 Q1 MATHEMATICS
Raimundo N. Araújo dos Santos, Eder L. Sanchez Quiceno
{"title":"论与混合多项式相关的 3 球中的实代数联系","authors":"Raimundo N. Araújo dos Santos, Eder L. Sanchez Quiceno","doi":"10.1007/s40687-024-00424-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper we construct new classes of mixed singularities that provide realizations of real algebraic links in the 3-sphere. Especially, we describe this construction in the case of semiholomorphic polynomials, which are mixed polynomials that are holomorphic in one variable. Classifications and characterizations of real algebraic links are still open. These new classes of mixed singularities may help to shed light on the Benedetti–Shiota conjecture, which states that any fibered link on the 3-sphere is a real algebraic link.</p>","PeriodicalId":48561,"journal":{"name":"Research in the Mathematical Sciences","volume":"54 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On real algebraic links in the 3-sphere associated with mixed polynomials\",\"authors\":\"Raimundo N. Araújo dos Santos, Eder L. Sanchez Quiceno\",\"doi\":\"10.1007/s40687-024-00424-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we construct new classes of mixed singularities that provide realizations of real algebraic links in the 3-sphere. Especially, we describe this construction in the case of semiholomorphic polynomials, which are mixed polynomials that are holomorphic in one variable. Classifications and characterizations of real algebraic links are still open. These new classes of mixed singularities may help to shed light on the Benedetti–Shiota conjecture, which states that any fibered link on the 3-sphere is a real algebraic link.</p>\",\"PeriodicalId\":48561,\"journal\":{\"name\":\"Research in the Mathematical Sciences\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in the Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-024-00424-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in the Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00424-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构建了新的混合奇异点类别,这些奇异点为 3 球中的实代数联系提供了现实化。特别是,我们描述了在半全形多项式情况下的这种构造,半全形多项式是在一个变量中全形的混合多项式。实代数链接的分类和特征描述仍未完成。这些新的混合奇点类可能有助于揭示贝内德蒂-希奥塔猜想,即 3 球上的任何纤维链都是实代数链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On real algebraic links in the 3-sphere associated with mixed polynomials

On real algebraic links in the 3-sphere associated with mixed polynomials

In this paper we construct new classes of mixed singularities that provide realizations of real algebraic links in the 3-sphere. Especially, we describe this construction in the case of semiholomorphic polynomials, which are mixed polynomials that are holomorphic in one variable. Classifications and characterizations of real algebraic links are still open. These new classes of mixed singularities may help to shed light on the Benedetti–Shiota conjecture, which states that any fibered link on the 3-sphere is a real algebraic link.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in the Mathematical Sciences
Research in the Mathematical Sciences Mathematics-Computational Mathematics
CiteScore
2.00
自引率
8.30%
发文量
58
期刊介绍: Research in the Mathematical Sciences is an international, peer-reviewed hybrid journal covering the full scope of Theoretical Mathematics, Applied Mathematics, and Theoretical Computer Science. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to the research areas of both theoretical and applied mathematics and theoretical computer science. This journal is an efficient enterprise where the editors play a central role in soliciting the best research papers, and where editorial decisions are reached in a timely fashion. Research in the Mathematical Sciences does not have a length restriction and encourages the submission of longer articles in which more complex and detailed analysis and proofing of theorems is required. It also publishes shorter research communications (Letters) covering nascent research in some of the hottest areas of mathematical research. This journal will publish the highest quality papers in all of the traditional areas of applied and theoretical areas of mathematics and computer science, and it will actively seek to publish seminal papers in the most emerging and interdisciplinary areas in all of the mathematical sciences. Research in the Mathematical Sciences wishes to lead the way by promoting the highest quality research of this type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信