{"title":"关于图形的明智平分的说明","authors":"SHUFEI WU, XIAOBEI XIONG","doi":"10.1017/s000497272400008x","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>G</jats:italic> be a graph with <jats:italic>m</jats:italic> edges, minimum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline1.png\" /> <jats:tex-math> $\\delta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and containing no cycle of length 4. Answering a question of Bollobás and Scott, Fan <jats:italic>et al.</jats:italic> [‘Bisections of graphs without short cycles’, <jats:italic>Combinatorics, Probability and Computing</jats:italic>27(1) (2018), 44–59] showed that if (i) <jats:italic>G</jats:italic> is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline2.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-connected, or (ii) <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline3.png\" /> <jats:tex-math> $\\delta \\ge 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, or (iii) <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline4.png\" /> <jats:tex-math> $\\delta \\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the girth of <jats:italic>G</jats:italic> is at least 5, then <jats:italic>G</jats:italic> admits a bisection such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline5.png\" /> <jats:tex-math> $\\max \\{e(V_1),e(V_2)\\}\\le (1/4+o(1))m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline6.png\" /> <jats:tex-math> $e(V_i)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the number of edges of <jats:italic>G</jats:italic> with both ends in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline7.png\" /> <jats:tex-math> $V_i$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline8.png\" /> <jats:tex-math> $s\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer. In this note, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline9.png\" /> <jats:tex-math> $\\delta \\ge 2s-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>G</jats:italic> contains no <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline10.png\" /> <jats:tex-math> $K_{2,s}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a subgraph, then <jats:italic>G</jats:italic> admits a bisection such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S000497272400008X_inline11.png\" /> <jats:tex-math> $\\max \\{e(V_1),e(V_2)\\}\\le (1/4+o(1))m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON JUDICIOUS BISECTIONS OF GRAPHS\",\"authors\":\"SHUFEI WU, XIAOBEI XIONG\",\"doi\":\"10.1017/s000497272400008x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>G</jats:italic> be a graph with <jats:italic>m</jats:italic> edges, minimum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline1.png\\\" /> <jats:tex-math> $\\\\delta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and containing no cycle of length 4. Answering a question of Bollobás and Scott, Fan <jats:italic>et al.</jats:italic> [‘Bisections of graphs without short cycles’, <jats:italic>Combinatorics, Probability and Computing</jats:italic>27(1) (2018), 44–59] showed that if (i) <jats:italic>G</jats:italic> is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline2.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-connected, or (ii) <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline3.png\\\" /> <jats:tex-math> $\\\\delta \\\\ge 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, or (iii) <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline4.png\\\" /> <jats:tex-math> $\\\\delta \\\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the girth of <jats:italic>G</jats:italic> is at least 5, then <jats:italic>G</jats:italic> admits a bisection such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline5.png\\\" /> <jats:tex-math> $\\\\max \\\\{e(V_1),e(V_2)\\\\}\\\\le (1/4+o(1))m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline6.png\\\" /> <jats:tex-math> $e(V_i)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the number of edges of <jats:italic>G</jats:italic> with both ends in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline7.png\\\" /> <jats:tex-math> $V_i$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline8.png\\\" /> <jats:tex-math> $s\\\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer. In this note, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline9.png\\\" /> <jats:tex-math> $\\\\delta \\\\ge 2s-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>G</jats:italic> contains no <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline10.png\\\" /> <jats:tex-math> $K_{2,s}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a subgraph, then <jats:italic>G</jats:italic> admits a bisection such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S000497272400008X_inline11.png\\\" /> <jats:tex-math> $\\\\max \\\\{e(V_1),e(V_2)\\\\}\\\\le (1/4+o(1))m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s000497272400008x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272400008x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个有 m 条边、最小度为 $\delta $ 且不包含长度为 4 的循环的图。['没有短周期的图的分叉',Combinatorics, Probability and Computing27(1) (2018),44-59]表明,如果(i)G 是 2 美元连接的,或者(ii)$\delta \ge 3$ 、或者(iii) $\delta\ge 2$,并且 G 的周长至少为 5,那么 G 允许一个分段,使得 $\max {e(V_1),e(V_2)\}\le (1/4+o(1))m$ ,其中 $e(V_i)$ 表示 G 中两端都在 $V_i$ 中的边的数量。让 $s\ge 2$ 为整数。在本注中,我们将证明如果 $\delta \ge 2s-1$并且 G 不包含 $K_{2,s}$ 作为子图,那么 G 允许有一个分段,使得 $\max \{e(V_1),e(V_2)\}le (1/4+o(1))m$ 。
Let G be a graph with m edges, minimum degree $\delta $ and containing no cycle of length 4. Answering a question of Bollobás and Scott, Fan et al. [‘Bisections of graphs without short cycles’, Combinatorics, Probability and Computing27(1) (2018), 44–59] showed that if (i) G is $2$ -connected, or (ii) $\delta \ge 3$ , or (iii) $\delta \ge 2$ and the girth of G is at least 5, then G admits a bisection such that $\max \{e(V_1),e(V_2)\}\le (1/4+o(1))m$ , where $e(V_i)$ denotes the number of edges of G with both ends in $V_i$ . Let $s\ge 2$ be an integer. In this note, we prove that if $\delta \ge 2s-1$ and G contains no $K_{2,s}$ as a subgraph, then G admits a bisection such that $\max \{e(V_1),e(V_2)\}\le (1/4+o(1))m$ .
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society