{"title":"关于涉及中心二项式系数的一些同余式","authors":"GUO-SHUAI MAO","doi":"10.1017/s0004972724000121","DOIUrl":null,"url":null,"abstract":"We prove the following conjecture of Z.-W. Sun [‘On congruences related to central binomial coefficients’, <jats:italic>J. Number Theory</jats:italic>13(11) (2011), 2219–2238]. Let <jats:italic>p</jats:italic> be an odd prime. Then <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000121_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*} \\sum_{k=1}^{p-1}\\frac{\\binom{2k}k}{k2^k}\\equiv-\\frac12H_{{(p-1)}/2}+\\frac7{16}p^2B_{p-3}\\pmod{p^3}, \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000121_inline1.png\" /> <jats:tex-math> $H_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:italic>n</jats:italic>th harmonic number and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000121_inline2.png\" /> <jats:tex-math> $B_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:italic>n</jats:italic>th Bernoulli number. In addition, we evaluate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000121_inline3.png\" /> <jats:tex-math> $\\sum _{k=0}^{p-1}(ak+b)\\binom {2k}k/2^k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> modulo <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000121_inline4.png\" /> <jats:tex-math> $p^3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:italic>p</jats:italic>-adic integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000121_inline5.png\" /> <jats:tex-math> $a, b$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON SOME CONGRUENCES INVOLVING CENTRAL BINOMIAL COEFFICIENTS\",\"authors\":\"GUO-SHUAI MAO\",\"doi\":\"10.1017/s0004972724000121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the following conjecture of Z.-W. Sun [‘On congruences related to central binomial coefficients’, <jats:italic>J. Number Theory</jats:italic>13(11) (2011), 2219–2238]. Let <jats:italic>p</jats:italic> be an odd prime. Then <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000121_eqnu1.png\\\" /> <jats:tex-math> $$ \\\\begin{align*} \\\\sum_{k=1}^{p-1}\\\\frac{\\\\binom{2k}k}{k2^k}\\\\equiv-\\\\frac12H_{{(p-1)}/2}+\\\\frac7{16}p^2B_{p-3}\\\\pmod{p^3}, \\\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000121_inline1.png\\\" /> <jats:tex-math> $H_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:italic>n</jats:italic>th harmonic number and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000121_inline2.png\\\" /> <jats:tex-math> $B_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:italic>n</jats:italic>th Bernoulli number. In addition, we evaluate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000121_inline3.png\\\" /> <jats:tex-math> $\\\\sum _{k=0}^{p-1}(ak+b)\\\\binom {2k}k/2^k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> modulo <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000121_inline4.png\\\" /> <jats:tex-math> $p^3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:italic>p</jats:italic>-adic integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000121_inline5.png\\\" /> <jats:tex-math> $a, b$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000121\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000121","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了 Z. -W.Sun ['On congruences related to central binomial coefficients', J. Number Theory13(11) (2011), 2219-2238].设 p 是奇素数。那么 $$ \begin{align*}\sum_{k=1}^{p-1}\frac{\binom{2k}k}{k2^k}\equiv-\frac12H_{{(p-1)}/2}+\frac7{16}p^2B_{p-3}\pmod{p^3}, \end{align*}$$ 其中 $H_n$ 是第 n 次谐波数,$B_n$ 是第 n 次伯努利数。此外,对于任意 p-adic 整数 $a,b$,我们将对 $sum _{k=0}^{p-1}(ak+b)\binom {2k}k/2^k$ modulo $p^3$ 进行求值。
ON SOME CONGRUENCES INVOLVING CENTRAL BINOMIAL COEFFICIENTS
We prove the following conjecture of Z.-W. Sun [‘On congruences related to central binomial coefficients’, J. Number Theory13(11) (2011), 2219–2238]. Let p be an odd prime. Then $$ \begin{align*} \sum_{k=1}^{p-1}\frac{\binom{2k}k}{k2^k}\equiv-\frac12H_{{(p-1)}/2}+\frac7{16}p^2B_{p-3}\pmod{p^3}, \end{align*} $$ where $H_n$ is the nth harmonic number and $B_n$ is the nth Bernoulli number. In addition, we evaluate $\sum _{k=0}^{p-1}(ak+b)\binom {2k}k/2^k$ modulo $p^3$ for any p-adic integers $a, b$ .
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society