{"title":"垂直导水性和层状异质性:从测量到模型","authors":"Martin G. Shepley","doi":"10.1007/s10040-024-02773-3","DOIUrl":null,"url":null,"abstract":"<p>Published laboratory and field estimates of vertical hydraulic conductivity (<i>K</i><sub>v</sub>) and the anisotropy ratio (<i>K</i><sub>h</sub>/<i>K</i><sub>v</sub>, where <i>K</i><sub>h</sub> is horizontal hydraulic conductivity) have been compared with equivalent groundwater model values, mainly for sedimentary strata. The results show that model <i>K</i><sub>v</sub> values tend to be higher and <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> values tend to be lower than field estimates for vertical length scales ≥10 m, particularly for coarse-grained unlithified sediments. This difference is attributed to the widespread use of the assumption of <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> = 1 and particularly <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> = 10 in groundwater models, regardless of the length scale or strata type represented. The origin of the <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> = 10 assumption is obscure and not founded on rigorous data analysis. <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub>, and by inference <i>K</i><sub>v</sub>, is frequently an unimportant parameter in model construction and calibration. On balance, this model artefact is attributed to the common reliance on summary head calibration statistics that hide the inadequacies of the MODFLOW paradigm (<i>K</i><sub>xx</sub> = <i>K</i><sub>yy</sub> = <i>K</i><sub>h</sub>, <i>K</i><sub>zz</sub> = <i>K</i><sub>v</sub>) when used for large-scale hydrostratigraphic units with uniform parameterization, fixed <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub>, and 1 ≤ <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> ≤ 10. However, thin, high-permeability aquifer models or well-defined aquifer/aquitard models are examples where such simplifying assumptions for <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> are workable, given groundwater quantity objectives. More realistic model values of <i>K</i><sub>v</sub> and <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> at length scales greater than field estimates could be obtained by independent calibration of <i>K</i><sub>v</sub> and <i>K</i><sub>h</sub>, use of larger-scale field estimates of <i>K</i><sub>v</sub> and multi-level piezometer/observation wells, and calibration to vertical head gradients separate from summary head calibration statistics.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":"34 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical hydraulic conductivity and layered heterogeneity: from measurements to models\",\"authors\":\"Martin G. Shepley\",\"doi\":\"10.1007/s10040-024-02773-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Published laboratory and field estimates of vertical hydraulic conductivity (<i>K</i><sub>v</sub>) and the anisotropy ratio (<i>K</i><sub>h</sub>/<i>K</i><sub>v</sub>, where <i>K</i><sub>h</sub> is horizontal hydraulic conductivity) have been compared with equivalent groundwater model values, mainly for sedimentary strata. The results show that model <i>K</i><sub>v</sub> values tend to be higher and <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> values tend to be lower than field estimates for vertical length scales ≥10 m, particularly for coarse-grained unlithified sediments. This difference is attributed to the widespread use of the assumption of <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> = 1 and particularly <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> = 10 in groundwater models, regardless of the length scale or strata type represented. The origin of the <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> = 10 assumption is obscure and not founded on rigorous data analysis. <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub>, and by inference <i>K</i><sub>v</sub>, is frequently an unimportant parameter in model construction and calibration. On balance, this model artefact is attributed to the common reliance on summary head calibration statistics that hide the inadequacies of the MODFLOW paradigm (<i>K</i><sub>xx</sub> = <i>K</i><sub>yy</sub> = <i>K</i><sub>h</sub>, <i>K</i><sub>zz</sub> = <i>K</i><sub>v</sub>) when used for large-scale hydrostratigraphic units with uniform parameterization, fixed <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub>, and 1 ≤ <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> ≤ 10. However, thin, high-permeability aquifer models or well-defined aquifer/aquitard models are examples where such simplifying assumptions for <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> are workable, given groundwater quantity objectives. More realistic model values of <i>K</i><sub>v</sub> and <i>K</i><sub>h</sub>/<i>K</i><sub>v</sub> at length scales greater than field estimates could be obtained by independent calibration of <i>K</i><sub>v</sub> and <i>K</i><sub>h</sub>, use of larger-scale field estimates of <i>K</i><sub>v</sub> and multi-level piezometer/observation wells, and calibration to vertical head gradients separate from summary head calibration statistics.</p>\",\"PeriodicalId\":13013,\"journal\":{\"name\":\"Hydrogeology Journal\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrogeology Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10040-024-02773-3\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10040-024-02773-3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Vertical hydraulic conductivity and layered heterogeneity: from measurements to models
Published laboratory and field estimates of vertical hydraulic conductivity (Kv) and the anisotropy ratio (Kh/Kv, where Kh is horizontal hydraulic conductivity) have been compared with equivalent groundwater model values, mainly for sedimentary strata. The results show that model Kv values tend to be higher and Kh/Kv values tend to be lower than field estimates for vertical length scales ≥10 m, particularly for coarse-grained unlithified sediments. This difference is attributed to the widespread use of the assumption of Kh/Kv = 1 and particularly Kh/Kv = 10 in groundwater models, regardless of the length scale or strata type represented. The origin of the Kh/Kv = 10 assumption is obscure and not founded on rigorous data analysis. Kh/Kv, and by inference Kv, is frequently an unimportant parameter in model construction and calibration. On balance, this model artefact is attributed to the common reliance on summary head calibration statistics that hide the inadequacies of the MODFLOW paradigm (Kxx = Kyy = Kh, Kzz = Kv) when used for large-scale hydrostratigraphic units with uniform parameterization, fixed Kh/Kv, and 1 ≤ Kh/Kv ≤ 10. However, thin, high-permeability aquifer models or well-defined aquifer/aquitard models are examples where such simplifying assumptions for Kh/Kv are workable, given groundwater quantity objectives. More realistic model values of Kv and Kh/Kv at length scales greater than field estimates could be obtained by independent calibration of Kv and Kh, use of larger-scale field estimates of Kv and multi-level piezometer/observation wells, and calibration to vertical head gradients separate from summary head calibration statistics.
期刊介绍:
Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries.
Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.