用于检测 SARS-CoV-2 的电化学和纳米光子生物传感器的最新进展

IF 5.5 3区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
{"title":"用于检测 SARS-CoV-2 的电化学和纳米光子生物传感器的最新进展","authors":"","doi":"10.1007/s13206-024-00138-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The contagious respiratory illness coronavirus disease 2019 (COVID-19) has had an unprecedented impact on both global health and society, causing a global pandemic due to its rapid transmission. The emergence of numerous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the critical importance of accurately diagnosing variants of concern (VOCs). Viruses have demonstrated a remarkable ability to evolve and adapt to their environments. Therefore, it is crucial to develop effective diagnostic methods that provide rapid, high sensitivity, and selectivity in a point-of-care (PoC) format, meeting the vital need for detecting and addressing emerging new viruses in the future. With the development of nanotechnology and biotechnology, there have been innovations in rapid, multiplexed, and portable sensors with high sensitivity and specificity. In this review, we discuss the fundamental properties of the SARS-CoV-2 virus, conventional diagnostic methods, and recent developments from the perspective of electrochemical- and nanophotonic-based SARS-CoV-2 biosensors, including our recent work.</p>","PeriodicalId":8768,"journal":{"name":"BioChip Journal","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Electrochemical and Nanophotonic Biosensors for SARS-CoV-2 Detection\",\"authors\":\"\",\"doi\":\"10.1007/s13206-024-00138-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The contagious respiratory illness coronavirus disease 2019 (COVID-19) has had an unprecedented impact on both global health and society, causing a global pandemic due to its rapid transmission. The emergence of numerous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the critical importance of accurately diagnosing variants of concern (VOCs). Viruses have demonstrated a remarkable ability to evolve and adapt to their environments. Therefore, it is crucial to develop effective diagnostic methods that provide rapid, high sensitivity, and selectivity in a point-of-care (PoC) format, meeting the vital need for detecting and addressing emerging new viruses in the future. With the development of nanotechnology and biotechnology, there have been innovations in rapid, multiplexed, and portable sensors with high sensitivity and specificity. In this review, we discuss the fundamental properties of the SARS-CoV-2 virus, conventional diagnostic methods, and recent developments from the perspective of electrochemical- and nanophotonic-based SARS-CoV-2 biosensors, including our recent work.</p>\",\"PeriodicalId\":8768,\"journal\":{\"name\":\"BioChip Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioChip Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13206-024-00138-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChip Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13206-024-00138-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 2019 年传染性呼吸道疾病冠状病毒病(COVID-19)对全球健康和社会产生了前所未有的影响,由于其传播速度快,造成了全球大流行。严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)众多变种的出现凸显了准确诊断相关变种(VOCs)的极端重要性。病毒显示出进化和适应环境的非凡能力。因此,开发出快速、高灵敏度、高选择性的有效诊断方法至关重要,这种诊断方法可在护理点(PoC)形式下进行,以满足检测和应对未来新出现的病毒的迫切需要。随着纳米技术和生物技术的发展,具有高灵敏度和特异性的快速、多路复用和便携式传感器也有了创新。在这篇综述中,我们将从基于电化学和纳米光子的 SARS-CoV-2 生物传感器的角度,讨论 SARS-CoV-2 病毒的基本特性、传统诊断方法和最新进展,包括我们最近的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advances in Electrochemical and Nanophotonic Biosensors for SARS-CoV-2 Detection

Abstract

The contagious respiratory illness coronavirus disease 2019 (COVID-19) has had an unprecedented impact on both global health and society, causing a global pandemic due to its rapid transmission. The emergence of numerous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the critical importance of accurately diagnosing variants of concern (VOCs). Viruses have demonstrated a remarkable ability to evolve and adapt to their environments. Therefore, it is crucial to develop effective diagnostic methods that provide rapid, high sensitivity, and selectivity in a point-of-care (PoC) format, meeting the vital need for detecting and addressing emerging new viruses in the future. With the development of nanotechnology and biotechnology, there have been innovations in rapid, multiplexed, and portable sensors with high sensitivity and specificity. In this review, we discuss the fundamental properties of the SARS-CoV-2 virus, conventional diagnostic methods, and recent developments from the perspective of electrochemical- and nanophotonic-based SARS-CoV-2 biosensors, including our recent work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioChip Journal
BioChip Journal 生物-生化研究方法
CiteScore
7.70
自引率
16.30%
发文量
47
审稿时长
6-12 weeks
期刊介绍: BioChip Journal publishes original research and reviews in all areas of the biochip technology in the following disciplines, including protein chip, DNA chip, cell chip, lab-on-a-chip, bio-MEMS, biosensor, micro/nano mechanics, microfluidics, high-throughput screening technology, medical science, genomics, proteomics, bioinformatics, medical diagnostics, environmental monitoring and micro/nanotechnology. The Journal is committed to rapid peer review to ensure the publication of highest quality original research and timely news and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信