Geonho Jin, Dohyung Kim, Seonghun Mun, Seokyoung Bang
{"title":"基于被动流的 MPS:研究流动对单个组织和组织间相互作用影响的新兴生理流动模拟平台","authors":"Geonho Jin, Dohyung Kim, Seonghun Mun, Seokyoung Bang","doi":"10.1007/s13206-024-00141-7","DOIUrl":null,"url":null,"abstract":"<p>Flow at various scales, such as perfusion flow and interstitial flow, is a critical component of the physiology of living systems. Microphysiological system (MPS), which is designed to mimic human physiology, needs to recapitulate various physiological flows to accurately reflect in vivo conditions. Most MPSs that simulate flows utilize a pump and tubing (pumped-based-flow MPS). However, these components have limitations that prevent them from recapitulating sophisticated physiological phenomena. Alternatively, passive-flow MPS can be used to recapitulate physiological flow on various scales without using pumps or tubing. This review presents recent developments in passive-flow-based MPS using various engineering approaches. To this end, engineering approaches that enable a passive-flow-based MPS to operate are summarized. Subsequently, representative examples of passive-flow-based MPS are reviewed under the criterion of whether they can recapitulate single-organ (tissue) or multi-organ (tissue) systems. It is our belief that passive-flow-based MPS will be widely used in a wide range of fields, such as human physiology research, analysis of pharmacokinetics and pharmacodynamics (PK/PD), and even space medicine research.</p>","PeriodicalId":8768,"journal":{"name":"BioChip Journal","volume":"33 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive-Flow-Based MPS: Emerging Physiological Flow-Mimetic Platforms for Studying Effects of Flow on Single Tissues and Inter-tissue Interactions\",\"authors\":\"Geonho Jin, Dohyung Kim, Seonghun Mun, Seokyoung Bang\",\"doi\":\"10.1007/s13206-024-00141-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow at various scales, such as perfusion flow and interstitial flow, is a critical component of the physiology of living systems. Microphysiological system (MPS), which is designed to mimic human physiology, needs to recapitulate various physiological flows to accurately reflect in vivo conditions. Most MPSs that simulate flows utilize a pump and tubing (pumped-based-flow MPS). However, these components have limitations that prevent them from recapitulating sophisticated physiological phenomena. Alternatively, passive-flow MPS can be used to recapitulate physiological flow on various scales without using pumps or tubing. This review presents recent developments in passive-flow-based MPS using various engineering approaches. To this end, engineering approaches that enable a passive-flow-based MPS to operate are summarized. Subsequently, representative examples of passive-flow-based MPS are reviewed under the criterion of whether they can recapitulate single-organ (tissue) or multi-organ (tissue) systems. It is our belief that passive-flow-based MPS will be widely used in a wide range of fields, such as human physiology research, analysis of pharmacokinetics and pharmacodynamics (PK/PD), and even space medicine research.</p>\",\"PeriodicalId\":8768,\"journal\":{\"name\":\"BioChip Journal\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioChip Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13206-024-00141-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChip Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13206-024-00141-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Passive-Flow-Based MPS: Emerging Physiological Flow-Mimetic Platforms for Studying Effects of Flow on Single Tissues and Inter-tissue Interactions
Flow at various scales, such as perfusion flow and interstitial flow, is a critical component of the physiology of living systems. Microphysiological system (MPS), which is designed to mimic human physiology, needs to recapitulate various physiological flows to accurately reflect in vivo conditions. Most MPSs that simulate flows utilize a pump and tubing (pumped-based-flow MPS). However, these components have limitations that prevent them from recapitulating sophisticated physiological phenomena. Alternatively, passive-flow MPS can be used to recapitulate physiological flow on various scales without using pumps or tubing. This review presents recent developments in passive-flow-based MPS using various engineering approaches. To this end, engineering approaches that enable a passive-flow-based MPS to operate are summarized. Subsequently, representative examples of passive-flow-based MPS are reviewed under the criterion of whether they can recapitulate single-organ (tissue) or multi-organ (tissue) systems. It is our belief that passive-flow-based MPS will be widely used in a wide range of fields, such as human physiology research, analysis of pharmacokinetics and pharmacodynamics (PK/PD), and even space medicine research.
期刊介绍:
BioChip Journal publishes original research and reviews in all areas of the biochip technology in the following disciplines, including protein chip, DNA chip, cell chip, lab-on-a-chip, bio-MEMS, biosensor, micro/nano mechanics, microfluidics, high-throughput screening technology, medical science, genomics, proteomics, bioinformatics, medical diagnostics, environmental monitoring and micro/nanotechnology. The Journal is committed to rapid peer review to ensure the publication of highest quality original research and timely news and review articles.