开发新型散装金属玻璃粘合单层金刚石砂轮

IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Dandan Wu , Zijun Liu , Yufu Yan , Qiaosen Liang , Liyan Luo , Chengyong Wang
{"title":"开发新型散装金属玻璃粘合单层金刚石砂轮","authors":"Dandan Wu ,&nbsp;Zijun Liu ,&nbsp;Yufu Yan ,&nbsp;Qiaosen Liang ,&nbsp;Liyan Luo ,&nbsp;Chengyong Wang","doi":"10.1016/j.ijmachtools.2024.104146","DOIUrl":null,"url":null,"abstract":"<div><p>A novel manufacturing process was employed to develop a single-layer diamond wheel using bulk metallic glass (BMG) as the matrix and diamond particles as abrasives. BMG effectively prevented graphitisation and damage to the diamond abrasives because of its lower manufacturing temperature and avoidance of brazing flux. The Titanium (Ti) coating on the surface of diamond abrasives facilitated the formation of an interleaved dissolution-diffusion interface between the two constituents, creating mechanical occlusion at the BMG-diamond interface. The strong and tight bonding interface afforded a diamond abrasive joint strength of up to 112.59 N, with the main shear failure mode being transgranular fracture instead of pull-off failure. Furthermore, the manufactured BMG-bonded single-layer diamond wheel predominantly exhibited attritious wear instead of the exfoliation of abrasives when grinding Al<sub>2</sub>O<sub>3</sub> ceramics. Compared with contemporary electroplated grinding wheels, the developed diamond wheel demonstrated a reduction in the normal and tangential grinding forces of 32.64% and 35.86%, respectively, and a 28.22% increase in the grinding ratio, making it an excellent candidate for grinding hard and brittle materials.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"197 ","pages":"Article 104146"},"PeriodicalIF":14.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel bulk metallic glass bonded single-layer diamond wheel\",\"authors\":\"Dandan Wu ,&nbsp;Zijun Liu ,&nbsp;Yufu Yan ,&nbsp;Qiaosen Liang ,&nbsp;Liyan Luo ,&nbsp;Chengyong Wang\",\"doi\":\"10.1016/j.ijmachtools.2024.104146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel manufacturing process was employed to develop a single-layer diamond wheel using bulk metallic glass (BMG) as the matrix and diamond particles as abrasives. BMG effectively prevented graphitisation and damage to the diamond abrasives because of its lower manufacturing temperature and avoidance of brazing flux. The Titanium (Ti) coating on the surface of diamond abrasives facilitated the formation of an interleaved dissolution-diffusion interface between the two constituents, creating mechanical occlusion at the BMG-diamond interface. The strong and tight bonding interface afforded a diamond abrasive joint strength of up to 112.59 N, with the main shear failure mode being transgranular fracture instead of pull-off failure. Furthermore, the manufactured BMG-bonded single-layer diamond wheel predominantly exhibited attritious wear instead of the exfoliation of abrasives when grinding Al<sub>2</sub>O<sub>3</sub> ceramics. Compared with contemporary electroplated grinding wheels, the developed diamond wheel demonstrated a reduction in the normal and tangential grinding forces of 32.64% and 35.86%, respectively, and a 28.22% increase in the grinding ratio, making it an excellent candidate for grinding hard and brittle materials.</p></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"197 \",\"pages\":\"Article 104146\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695524000324\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695524000324","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

我们采用了一种新颖的制造工艺,以块状金属玻璃(BMG)为基体,以金刚石颗粒为磨料,开发出了单层金刚石砂轮。由于 BMG 的制造温度较低,且无需使用钎剂,因此可有效防止石墨化和金刚石磨料的损坏。金刚石磨料表面的钛(Ti)涂层有助于在两种成分之间形成交错的溶解-扩散界面,从而在 BMG-金刚石界面上形成机械咬合。牢固而紧密的粘合界面使金刚石磨料的接合强度高达 112.59 N,主要的剪切失效模式是跨晶断裂,而不是拉断失效。此外,制造出的 BMG 粘结单层金刚石砂轮在磨削氧化铝陶瓷时,主要表现为磨损而不是磨料剥落。与现代电镀砂轮相比,所开发的金刚石砂轮的法向磨削力和切向磨削力分别降低了 32.64% 和 35.86%,磨削比提高了 28.22%,是磨削硬脆材料的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of a novel bulk metallic glass bonded single-layer diamond wheel

Development of a novel bulk metallic glass bonded single-layer diamond wheel

A novel manufacturing process was employed to develop a single-layer diamond wheel using bulk metallic glass (BMG) as the matrix and diamond particles as abrasives. BMG effectively prevented graphitisation and damage to the diamond abrasives because of its lower manufacturing temperature and avoidance of brazing flux. The Titanium (Ti) coating on the surface of diamond abrasives facilitated the formation of an interleaved dissolution-diffusion interface between the two constituents, creating mechanical occlusion at the BMG-diamond interface. The strong and tight bonding interface afforded a diamond abrasive joint strength of up to 112.59 N, with the main shear failure mode being transgranular fracture instead of pull-off failure. Furthermore, the manufactured BMG-bonded single-layer diamond wheel predominantly exhibited attritious wear instead of the exfoliation of abrasives when grinding Al2O3 ceramics. Compared with contemporary electroplated grinding wheels, the developed diamond wheel demonstrated a reduction in the normal and tangential grinding forces of 32.64% and 35.86%, respectively, and a 28.22% increase in the grinding ratio, making it an excellent candidate for grinding hard and brittle materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.70
自引率
10.00%
发文量
66
审稿时长
18 days
期刊介绍: The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics: - Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms. - Significant scientific advancements in existing or new processes and machines. - In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes. - Tool design, utilization, and comprehensive studies of failure mechanisms. - Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope. - Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes. - Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools"). - Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信