岩石在单轴加载过程中的机械损伤特征和新型构成模型

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kai Chen, Roberto Cudmani, Andres Alfonso Pena Olarte
{"title":"岩石在单轴加载过程中的机械损伤特征和新型构成模型","authors":"Kai Chen, Roberto Cudmani, Andres Alfonso Pena Olarte","doi":"10.1177/10567895241233836","DOIUrl":null,"url":null,"abstract":"The study of constitutive relationship and damage degradation is crucial in solving the stability challenges faced in the rock engineering. In this work, the stress-strain relationships of different type of rocks subjected to uniaxial loading processes are investigated in details. Experimental results demonstrate measurements, such as uniaxial compressive strength (UCS), tangent deformation modulus, peak strain, and Poisson’s ratio ([Formula: see text]). A novel piecewise constitutive model is proposed that utilizes both a constitutive model during compaction and a conventional damage model using the strain equivalence assumption and logistic growth theory to represent the characteristics of stress-deformation curves during both compaction and post-compaction stages. The performance of the proposed constitutive models in capturing deformation characteristics of damaged rocks is demonstrated to be more outstanding in comparison to existing models. In all experimental cases discussed in this study, the proposed model outperforms existing reference models in terms of the coefficients of determination ([Formula: see text]), with the former having coefficients of determination greater than 0.95. Furthermore, physical meanings of relevant model parameters are found to be closely associated with properties of experimental stress-strain curves.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"34 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical impairment characteristics and a novel constitutive model for rocks subjected to uniaxial loading process\",\"authors\":\"Kai Chen, Roberto Cudmani, Andres Alfonso Pena Olarte\",\"doi\":\"10.1177/10567895241233836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of constitutive relationship and damage degradation is crucial in solving the stability challenges faced in the rock engineering. In this work, the stress-strain relationships of different type of rocks subjected to uniaxial loading processes are investigated in details. Experimental results demonstrate measurements, such as uniaxial compressive strength (UCS), tangent deformation modulus, peak strain, and Poisson’s ratio ([Formula: see text]). A novel piecewise constitutive model is proposed that utilizes both a constitutive model during compaction and a conventional damage model using the strain equivalence assumption and logistic growth theory to represent the characteristics of stress-deformation curves during both compaction and post-compaction stages. The performance of the proposed constitutive models in capturing deformation characteristics of damaged rocks is demonstrated to be more outstanding in comparison to existing models. In all experimental cases discussed in this study, the proposed model outperforms existing reference models in terms of the coefficients of determination ([Formula: see text]), with the former having coefficients of determination greater than 0.95. Furthermore, physical meanings of relevant model parameters are found to be closely associated with properties of experimental stress-strain curves.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895241233836\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241233836","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对构成关系和损伤退化的研究对于解决岩石工程中面临的稳定性挑战至关重要。本文详细研究了不同类型岩石在单轴加载过程中的应力应变关系。实验结果显示了单轴抗压强度(UCS)、切线变形模量、峰值应变和泊松比等测量值([公式:见正文])。我们提出了一种新颖的分块构成模型,该模型利用压实过程中的构成模型和使用应变等效假设和逻辑增长理论的传统破坏模型来表示压实过程和压实后阶段的应力-变形曲线特征。与现有模型相比,所提出的构成模型在捕捉受损岩石变形特征方面的性能更为突出。在本研究讨论的所有实验案例中,所提出的模型在判定系数([公式:见正文])方面均优于现有参考模型,前者的判定系数大于 0.95。此外,还发现相关模型参数的物理意义与实验应力-应变曲线的特性密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical impairment characteristics and a novel constitutive model for rocks subjected to uniaxial loading process
The study of constitutive relationship and damage degradation is crucial in solving the stability challenges faced in the rock engineering. In this work, the stress-strain relationships of different type of rocks subjected to uniaxial loading processes are investigated in details. Experimental results demonstrate measurements, such as uniaxial compressive strength (UCS), tangent deformation modulus, peak strain, and Poisson’s ratio ([Formula: see text]). A novel piecewise constitutive model is proposed that utilizes both a constitutive model during compaction and a conventional damage model using the strain equivalence assumption and logistic growth theory to represent the characteristics of stress-deformation curves during both compaction and post-compaction stages. The performance of the proposed constitutive models in capturing deformation characteristics of damaged rocks is demonstrated to be more outstanding in comparison to existing models. In all experimental cases discussed in this study, the proposed model outperforms existing reference models in terms of the coefficients of determination ([Formula: see text]), with the former having coefficients of determination greater than 0.95. Furthermore, physical meanings of relevant model parameters are found to be closely associated with properties of experimental stress-strain curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信