Audrey M Selecman, Brian R Morrow, Jane Moore, Franklin Garcia-Godoy
{"title":"硅树脂义齿衬垫的工作粘度和非牛顿行为。","authors":"Audrey M Selecman, Brian R Morrow, Jane Moore, Franklin Garcia-Godoy","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate flow profile and non-Newtonian behavior of 10 different silicone lining materials.</p><p><strong>Methods: </strong>Ten commercially available silicone lining materials were selected for evaluation. The flow profile and non-Newtonian behavior of each material was measured using a shark fin testing method. Fin height and resultant base thickness were measured with a digital caliper and compared with one-way ANOVA and Student-Newman-Keuls post hoc test and fin base by Kruskal-Wallis one-way ANOVA on ranks with Dunn post hoc test with significance at P< 0.05 for both.</p><p><strong>Results: </strong>Shark fin heights ranged from 9.62 ± 0.86 mm [Reline II (Soft)] to 25.54 ± 0.43 mm [Sofreliner (Medium)]. Shark fin bases ranged from 2.57 ± 0.51 mm [Sofreliner (Medium)] to 10.31 ± 0.57 mm [Reline II (Soft)]. Statistically significant differences were found between certain samples' shark fin heights as well as resultant bases (P< 0.05) indicating different rheological properties.</p><p><strong>Clinical significance: </strong>Silicone liner materials differ significantly with respect to flow profile and non-Newtonian behavior. While a high flow profile (low viscosity) of an elastomeric impression material improves accuracy, it may be a detriment to a denture lining material that must achieve a critical minimum thickness to provide resilience. Likewise, a low flow profile (high viscosity) material may also pose a disadvantage, requiring excessive compression and possible tissue distortion to achieve the same critical thickness. The results of this study should be considered when selecting the appropriate material for clinical application. Additional studies are indicated to further quantify rheological properties as well as correlate them to physical properties after the complete cure of the material.</p>","PeriodicalId":7538,"journal":{"name":"American journal of dentistry","volume":"37 1","pages":"53-56"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Working viscosity and non-Newtonian behavior of silicone denture liners.\",\"authors\":\"Audrey M Selecman, Brian R Morrow, Jane Moore, Franklin Garcia-Godoy\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate flow profile and non-Newtonian behavior of 10 different silicone lining materials.</p><p><strong>Methods: </strong>Ten commercially available silicone lining materials were selected for evaluation. The flow profile and non-Newtonian behavior of each material was measured using a shark fin testing method. Fin height and resultant base thickness were measured with a digital caliper and compared with one-way ANOVA and Student-Newman-Keuls post hoc test and fin base by Kruskal-Wallis one-way ANOVA on ranks with Dunn post hoc test with significance at P< 0.05 for both.</p><p><strong>Results: </strong>Shark fin heights ranged from 9.62 ± 0.86 mm [Reline II (Soft)] to 25.54 ± 0.43 mm [Sofreliner (Medium)]. Shark fin bases ranged from 2.57 ± 0.51 mm [Sofreliner (Medium)] to 10.31 ± 0.57 mm [Reline II (Soft)]. Statistically significant differences were found between certain samples' shark fin heights as well as resultant bases (P< 0.05) indicating different rheological properties.</p><p><strong>Clinical significance: </strong>Silicone liner materials differ significantly with respect to flow profile and non-Newtonian behavior. While a high flow profile (low viscosity) of an elastomeric impression material improves accuracy, it may be a detriment to a denture lining material that must achieve a critical minimum thickness to provide resilience. Likewise, a low flow profile (high viscosity) material may also pose a disadvantage, requiring excessive compression and possible tissue distortion to achieve the same critical thickness. The results of this study should be considered when selecting the appropriate material for clinical application. Additional studies are indicated to further quantify rheological properties as well as correlate them to physical properties after the complete cure of the material.</p>\",\"PeriodicalId\":7538,\"journal\":{\"name\":\"American journal of dentistry\",\"volume\":\"37 1\",\"pages\":\"53-56\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of dentistry","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Working viscosity and non-Newtonian behavior of silicone denture liners.
Purpose: To evaluate flow profile and non-Newtonian behavior of 10 different silicone lining materials.
Methods: Ten commercially available silicone lining materials were selected for evaluation. The flow profile and non-Newtonian behavior of each material was measured using a shark fin testing method. Fin height and resultant base thickness were measured with a digital caliper and compared with one-way ANOVA and Student-Newman-Keuls post hoc test and fin base by Kruskal-Wallis one-way ANOVA on ranks with Dunn post hoc test with significance at P< 0.05 for both.
Results: Shark fin heights ranged from 9.62 ± 0.86 mm [Reline II (Soft)] to 25.54 ± 0.43 mm [Sofreliner (Medium)]. Shark fin bases ranged from 2.57 ± 0.51 mm [Sofreliner (Medium)] to 10.31 ± 0.57 mm [Reline II (Soft)]. Statistically significant differences were found between certain samples' shark fin heights as well as resultant bases (P< 0.05) indicating different rheological properties.
Clinical significance: Silicone liner materials differ significantly with respect to flow profile and non-Newtonian behavior. While a high flow profile (low viscosity) of an elastomeric impression material improves accuracy, it may be a detriment to a denture lining material that must achieve a critical minimum thickness to provide resilience. Likewise, a low flow profile (high viscosity) material may also pose a disadvantage, requiring excessive compression and possible tissue distortion to achieve the same critical thickness. The results of this study should be considered when selecting the appropriate material for clinical application. Additional studies are indicated to further quantify rheological properties as well as correlate them to physical properties after the complete cure of the material.
期刊介绍:
The American Journal of Dentistry, published by Mosher & Linder, Inc., provides peer-reviewed scientific articles with clinical significance for the general dental practitioner.