Grisha Weintraub;Ehud Gudes;Shlomi Dolev;Jeffrey D. Ullman
{"title":"利用平衡覆盖计划优化云数据湖查询","authors":"Grisha Weintraub;Ehud Gudes;Shlomi Dolev;Jeffrey D. Ullman","doi":"10.1109/TCC.2023.3339208","DOIUrl":null,"url":null,"abstract":"Cloud data lakes emerge as an inexpensive solution for storing very large amounts of data. The main idea is the separation of compute and storage layers. Thus, cheap cloud storage is used for storing the data, while compute engines are used for running analytics on this data in “on-demand” mode. However, to perform any computation on the data in this architecture, the data should be moved from the storage layer to the compute layer over the network for each calculation. Obviously, that hurts calculation performance and requires huge network bandwidth. In this paper, we study different approaches to improve query performance in a data lake architecture. We define an optimization problem that can provably speed up data lake queries. We prove that the problem is NP-hard and suggest heuristic approaches. Then, we demonstrate through the experiments that our approach is feasible and efficient (up to ×30 query execution time improvement based on the TPC-H benchmark).","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Cloud Data Lake Queries With a Balanced Coverage Plan\",\"authors\":\"Grisha Weintraub;Ehud Gudes;Shlomi Dolev;Jeffrey D. Ullman\",\"doi\":\"10.1109/TCC.2023.3339208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud data lakes emerge as an inexpensive solution for storing very large amounts of data. The main idea is the separation of compute and storage layers. Thus, cheap cloud storage is used for storing the data, while compute engines are used for running analytics on this data in “on-demand” mode. However, to perform any computation on the data in this architecture, the data should be moved from the storage layer to the compute layer over the network for each calculation. Obviously, that hurts calculation performance and requires huge network bandwidth. In this paper, we study different approaches to improve query performance in a data lake architecture. We define an optimization problem that can provably speed up data lake queries. We prove that the problem is NP-hard and suggest heuristic approaches. Then, we demonstrate through the experiments that our approach is feasible and efficient (up to ×30 query execution time improvement based on the TPC-H benchmark).\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10342737/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10342737/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Optimizing Cloud Data Lake Queries With a Balanced Coverage Plan
Cloud data lakes emerge as an inexpensive solution for storing very large amounts of data. The main idea is the separation of compute and storage layers. Thus, cheap cloud storage is used for storing the data, while compute engines are used for running analytics on this data in “on-demand” mode. However, to perform any computation on the data in this architecture, the data should be moved from the storage layer to the compute layer over the network for each calculation. Obviously, that hurts calculation performance and requires huge network bandwidth. In this paper, we study different approaches to improve query performance in a data lake architecture. We define an optimization problem that can provably speed up data lake queries. We prove that the problem is NP-hard and suggest heuristic approaches. Then, we demonstrate through the experiments that our approach is feasible and efficient (up to ×30 query execution time improvement based on the TPC-H benchmark).
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.