{"title":"通过量子转向在量子计算机上制备状态","authors":"Daniel Volya;Prabhat Mishra","doi":"10.1109/TQE.2024.3358193","DOIUrl":null,"url":null,"abstract":"Quantum computers present a compelling platform for the study of open quantum systems, namely, the nonunitary dynamics of a system. Here, we investigate and report digital simulations of Markovian nonunitary dynamics that converge to a unique steady state. The steady state is programmed as a desired target state, yielding semblance to a quantum state preparation protocol. By delegating ancilla qubits and system qubits, the system state is driven to the target state by repeatedly performing the following steps: 1) executing a designated system–ancilla entangling circuit; 2) measuring the ancilla qubits; and 3) reinitializing ancilla qubits to known states through active reset. While the ancilla qubits are measured and reinitialized to known states, the system qubits undergo a nonunitary evolution and are steered from arbitrary initial states to desired target states. We show results of the method by preparing arbitrary qubit states and qutrit (three-level) states on contemporary quantum computers. We also demonstrate that the state convergence can be accelerated by utilizing the readouts of the ancilla qubits to guide the protocol in a nonblind manner. Our work serves as a nontrivial example that incorporates and characterizes essential operations, such as qubit reuse (qubit reset), entangling circuits, and measurement. These operations are not only vital for near-term noisy intermediate-scale quantum applications but are also crucial for realizing future error-correcting codes.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10413647","citationCount":"0","resultStr":"{\"title\":\"State Preparation on Quantum Computers via Quantum Steering\",\"authors\":\"Daniel Volya;Prabhat Mishra\",\"doi\":\"10.1109/TQE.2024.3358193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computers present a compelling platform for the study of open quantum systems, namely, the nonunitary dynamics of a system. Here, we investigate and report digital simulations of Markovian nonunitary dynamics that converge to a unique steady state. The steady state is programmed as a desired target state, yielding semblance to a quantum state preparation protocol. By delegating ancilla qubits and system qubits, the system state is driven to the target state by repeatedly performing the following steps: 1) executing a designated system–ancilla entangling circuit; 2) measuring the ancilla qubits; and 3) reinitializing ancilla qubits to known states through active reset. While the ancilla qubits are measured and reinitialized to known states, the system qubits undergo a nonunitary evolution and are steered from arbitrary initial states to desired target states. We show results of the method by preparing arbitrary qubit states and qutrit (three-level) states on contemporary quantum computers. We also demonstrate that the state convergence can be accelerated by utilizing the readouts of the ancilla qubits to guide the protocol in a nonblind manner. Our work serves as a nontrivial example that incorporates and characterizes essential operations, such as qubit reuse (qubit reset), entangling circuits, and measurement. These operations are not only vital for near-term noisy intermediate-scale quantum applications but are also crucial for realizing future error-correcting codes.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10413647\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10413647/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10413647/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
State Preparation on Quantum Computers via Quantum Steering
Quantum computers present a compelling platform for the study of open quantum systems, namely, the nonunitary dynamics of a system. Here, we investigate and report digital simulations of Markovian nonunitary dynamics that converge to a unique steady state. The steady state is programmed as a desired target state, yielding semblance to a quantum state preparation protocol. By delegating ancilla qubits and system qubits, the system state is driven to the target state by repeatedly performing the following steps: 1) executing a designated system–ancilla entangling circuit; 2) measuring the ancilla qubits; and 3) reinitializing ancilla qubits to known states through active reset. While the ancilla qubits are measured and reinitialized to known states, the system qubits undergo a nonunitary evolution and are steered from arbitrary initial states to desired target states. We show results of the method by preparing arbitrary qubit states and qutrit (three-level) states on contemporary quantum computers. We also demonstrate that the state convergence can be accelerated by utilizing the readouts of the ancilla qubits to guide the protocol in a nonblind manner. Our work serves as a nontrivial example that incorporates and characterizes essential operations, such as qubit reuse (qubit reset), entangling circuits, and measurement. These operations are not only vital for near-term noisy intermediate-scale quantum applications but are also crucial for realizing future error-correcting codes.