Catarina I G Pinto, André D M Branco, Sara Bucar, Alexandra Fonseca, Antero J Abrunhosa, Cláudia L da Silva, Joana F Guerreiro, Filipa Mendes
{"title":"评估[64Cu]CuCl2 在胶质母细胞瘤球体内的治疗潜力。","authors":"Catarina I G Pinto, André D M Branco, Sara Bucar, Alexandra Fonseca, Antero J Abrunhosa, Cláudia L da Silva, Joana F Guerreiro, Filipa Mendes","doi":"10.1186/s13550-024-01084-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, <sup>64</sup>Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [<sup>64</sup>Cu]CuCl<sub>2</sub> accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [<sup>64</sup>Cu]CuCl<sub>2</sub>, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [<sup>64</sup>Cu]CuCl<sub>2</sub> exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of <sup>64</sup>Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS).</p><p><strong>Results: </strong>Results revealed that [<sup>64</sup>Cu]CuCl<sub>2</sub> is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of <sup>64</sup>Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of <sup>64</sup>Cu.</p><p><strong>Conclusions: </strong>Overall, our results further support [<sup>64</sup>Cu]CuCl<sub>2</sub> potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.</p>","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"14 1","pages":"26"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920519/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the theranostic potential of [<sup>64</sup>Cu]CuCl<sub>2</sub> in glioblastoma spheroids.\",\"authors\":\"Catarina I G Pinto, André D M Branco, Sara Bucar, Alexandra Fonseca, Antero J Abrunhosa, Cláudia L da Silva, Joana F Guerreiro, Filipa Mendes\",\"doi\":\"10.1186/s13550-024-01084-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, <sup>64</sup>Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [<sup>64</sup>Cu]CuCl<sub>2</sub> accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [<sup>64</sup>Cu]CuCl<sub>2</sub>, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [<sup>64</sup>Cu]CuCl<sub>2</sub> exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of <sup>64</sup>Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS).</p><p><strong>Results: </strong>Results revealed that [<sup>64</sup>Cu]CuCl<sub>2</sub> is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of <sup>64</sup>Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of <sup>64</sup>Cu.</p><p><strong>Conclusions: </strong>Overall, our results further support [<sup>64</sup>Cu]CuCl<sub>2</sub> potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.</p>\",\"PeriodicalId\":11611,\"journal\":{\"name\":\"EJNMMI Research\",\"volume\":\"14 1\",\"pages\":\"26\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920519/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13550-024-01084-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-024-01084-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Evaluation of the theranostic potential of [64Cu]CuCl2 in glioblastoma spheroids.
Background: Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, 64Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [64Cu]CuCl2 accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [64Cu]CuCl2, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [64Cu]CuCl2 exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of 64Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS).
Results: Results revealed that [64Cu]CuCl2 is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of 64Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of 64Cu.
Conclusions: Overall, our results further support [64Cu]CuCl2 potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.
EJNMMI ResearchRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING&nb-
CiteScore
5.90
自引率
3.10%
发文量
72
审稿时长
13 weeks
期刊介绍:
EJNMMI Research publishes new basic, translational and clinical research in the field of nuclear medicine and molecular imaging. Regular features include original research articles, rapid communication of preliminary data on innovative research, interesting case reports, editorials, and letters to the editor. Educational articles on basic sciences, fundamental aspects and controversy related to pre-clinical and clinical research or ethical aspects of research are also welcome. Timely reviews provide updates on current applications, issues in imaging research and translational aspects of nuclear medicine and molecular imaging technologies.
The main emphasis is placed on the development of targeted imaging with radiopharmaceuticals within the broader context of molecular probes to enhance understanding and characterisation of the complex biological processes underlying disease and to develop, test and guide new treatment modalities, including radionuclide therapy.