从调查数据中识别膳食消费模式:贝叶斯非参数潜类模型

Briana J K Stephenson, Stephanie M Wu, Francesca Dominici
{"title":"从调查数据中识别膳食消费模式:贝叶斯非参数潜类模型","authors":"Briana J K Stephenson, Stephanie M Wu, Francesca Dominici","doi":"10.1093/jrsssa/qnad135","DOIUrl":null,"url":null,"abstract":"<jats:title>Abstract</jats:title> Dietary assessments provide the snapshots of population-based dietary habits. Questions remain about how generalisable those snapshots are in national survey data, where certain subgroups are sampled disproportionately. We propose a Bayesian overfitted latent class model to derive dietary patterns, accounting for survey design and sampling variability. Compared to standard approaches, our model showed improved identifiability of the true population pattern and prevalence in simulation. We focus application of this model to identify the intake patterns of adults living at or below the 130% poverty income level. Five dietary patterns were identified and characterised by reproducible code/data made available to encourage further research.","PeriodicalId":517419,"journal":{"name":"The Journal of the Royal Statistical Society, Series A (Statistics in Society)","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying dietary consumption patterns from survey data: a Bayesian nonparametric latent class model\",\"authors\":\"Briana J K Stephenson, Stephanie M Wu, Francesca Dominici\",\"doi\":\"10.1093/jrsssa/qnad135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:title>Abstract</jats:title> Dietary assessments provide the snapshots of population-based dietary habits. Questions remain about how generalisable those snapshots are in national survey data, where certain subgroups are sampled disproportionately. We propose a Bayesian overfitted latent class model to derive dietary patterns, accounting for survey design and sampling variability. Compared to standard approaches, our model showed improved identifiability of the true population pattern and prevalence in simulation. We focus application of this model to identify the intake patterns of adults living at or below the 130% poverty income level. Five dietary patterns were identified and characterised by reproducible code/data made available to encourage further research.\",\"PeriodicalId\":517419,\"journal\":{\"name\":\"The Journal of the Royal Statistical Society, Series A (Statistics in Society)\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Royal Statistical Society, Series A (Statistics in Society)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnad135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Royal Statistical Society, Series A (Statistics in Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnad135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 膳食评估提供了基于人口的膳食习惯快照。在全国性调查数据中,由于某些亚群体的抽样比例过高,这些快照的通用性如何仍是个问题。我们提出了一种贝叶斯超拟合潜类模型来推导膳食模式,并考虑了调查设计和抽样的可变性。与标准方法相比,我们的模型在模拟中提高了真实人群模式和流行率的可识别性。我们重点应用该模型来识别生活在贫困线 130% 或以下的成年人的摄入模式。我们确定了五种膳食模式,并提供了可重复的代码/数据,以鼓励进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying dietary consumption patterns from survey data: a Bayesian nonparametric latent class model
Abstract Dietary assessments provide the snapshots of population-based dietary habits. Questions remain about how generalisable those snapshots are in national survey data, where certain subgroups are sampled disproportionately. We propose a Bayesian overfitted latent class model to derive dietary patterns, accounting for survey design and sampling variability. Compared to standard approaches, our model showed improved identifiability of the true population pattern and prevalence in simulation. We focus application of this model to identify the intake patterns of adults living at or below the 130% poverty income level. Five dietary patterns were identified and characterised by reproducible code/data made available to encourage further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信