{"title":"利用多标签学习和特征注意力分配识别 RNA-RBP 相互作用","authors":"Huirui Han, Bandeh Ali Talpur, Wei Liu, Limei Wang, Bilal Ahmed, Nadia Sarhan, Emad Mahrous Awwad","doi":"10.1186/s13677-024-00612-0","DOIUrl":null,"url":null,"abstract":"In this study, we present a sophisticated multi-label deep learning framework for the prediction of RNA-RBP (RNA-binding protein) interactions, a critical aspect in understanding RNA functionality modulation and its implications in disease pathogenesis. Our approach leverages machine learning to develop a rapid and cost-efficient predictive model for these interactions. The proposed model captures the complex characteristics of RNA and recognizes corresponding RBPs through its dual-module architecture. The first module employs convolutional neural networks (CNNs) for intricate feature extraction from RNA sequences, enabling the model to discern nuanced patterns and attributes. The second module is a multi-view multi-label classification system incorporating a feature attention mechanism. The second module is a multi-view multi-label classification system that utilizes a feature attention mechanism. This mechanism is designed to intricately analyze and distinguish between common and unique deep features derived from the diverse RNA characteristics. To evaluate the model's efficacy, extensive experiments were conducted on a comprehensive RNA-RBP interaction dataset. The results emphasize substantial improvements in the model's ability to predict RNA-RBP interactions compared to existing methodologies. This advancement emphasizes the model's potential in contributing to the understanding of RNA-mediated biological processes and disease etiology.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA-RBP interactions recognition using multi-label learning and feature attention allocation\",\"authors\":\"Huirui Han, Bandeh Ali Talpur, Wei Liu, Limei Wang, Bilal Ahmed, Nadia Sarhan, Emad Mahrous Awwad\",\"doi\":\"10.1186/s13677-024-00612-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a sophisticated multi-label deep learning framework for the prediction of RNA-RBP (RNA-binding protein) interactions, a critical aspect in understanding RNA functionality modulation and its implications in disease pathogenesis. Our approach leverages machine learning to develop a rapid and cost-efficient predictive model for these interactions. The proposed model captures the complex characteristics of RNA and recognizes corresponding RBPs through its dual-module architecture. The first module employs convolutional neural networks (CNNs) for intricate feature extraction from RNA sequences, enabling the model to discern nuanced patterns and attributes. The second module is a multi-view multi-label classification system incorporating a feature attention mechanism. The second module is a multi-view multi-label classification system that utilizes a feature attention mechanism. This mechanism is designed to intricately analyze and distinguish between common and unique deep features derived from the diverse RNA characteristics. To evaluate the model's efficacy, extensive experiments were conducted on a comprehensive RNA-RBP interaction dataset. The results emphasize substantial improvements in the model's ability to predict RNA-RBP interactions compared to existing methodologies. This advancement emphasizes the model's potential in contributing to the understanding of RNA-mediated biological processes and disease etiology.\",\"PeriodicalId\":501257,\"journal\":{\"name\":\"Journal of Cloud Computing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13677-024-00612-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00612-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RNA-RBP interactions recognition using multi-label learning and feature attention allocation
In this study, we present a sophisticated multi-label deep learning framework for the prediction of RNA-RBP (RNA-binding protein) interactions, a critical aspect in understanding RNA functionality modulation and its implications in disease pathogenesis. Our approach leverages machine learning to develop a rapid and cost-efficient predictive model for these interactions. The proposed model captures the complex characteristics of RNA and recognizes corresponding RBPs through its dual-module architecture. The first module employs convolutional neural networks (CNNs) for intricate feature extraction from RNA sequences, enabling the model to discern nuanced patterns and attributes. The second module is a multi-view multi-label classification system incorporating a feature attention mechanism. The second module is a multi-view multi-label classification system that utilizes a feature attention mechanism. This mechanism is designed to intricately analyze and distinguish between common and unique deep features derived from the diverse RNA characteristics. To evaluate the model's efficacy, extensive experiments were conducted on a comprehensive RNA-RBP interaction dataset. The results emphasize substantial improvements in the model's ability to predict RNA-RBP interactions compared to existing methodologies. This advancement emphasizes the model's potential in contributing to the understanding of RNA-mediated biological processes and disease etiology.