矩形欧拉图的可实现性

Dominik Dürrschnabel, Uta Priss
{"title":"矩形欧拉图的可实现性","authors":"Dominik Dürrschnabel, Uta Priss","doi":"arxiv-2403.03801","DOIUrl":null,"url":null,"abstract":"Euler diagrams are a tool for the graphical representation of set relations.\nDue to their simple way of visualizing elements in the sets by geometric\ncontainment, they are easily readable by an inexperienced reader. Euler\ndiagrams where the sets are visualized as aligned rectangles are of special\ninterest. In this work, we link the existence of such rectangular Euler\ndiagrams to the order dimension of an associated order relation. For this, we\nconsider Euler diagrams in one and two dimensions. In the one-dimensional case,\nthis correspondence provides us with a polynomial-time algorithm to compute the\nEuler diagrams, while the two-dimensional case results in an exponential-time\nalgorithm.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizability of Rectangular Euler Diagrams\",\"authors\":\"Dominik Dürrschnabel, Uta Priss\",\"doi\":\"arxiv-2403.03801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Euler diagrams are a tool for the graphical representation of set relations.\\nDue to their simple way of visualizing elements in the sets by geometric\\ncontainment, they are easily readable by an inexperienced reader. Euler\\ndiagrams where the sets are visualized as aligned rectangles are of special\\ninterest. In this work, we link the existence of such rectangular Euler\\ndiagrams to the order dimension of an associated order relation. For this, we\\nconsider Euler diagrams in one and two dimensions. In the one-dimensional case,\\nthis correspondence provides us with a polynomial-time algorithm to compute the\\nEuler diagrams, while the two-dimensional case results in an exponential-time\\nalgorithm.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.03801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.03801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

欧拉图是用图形表示集合关系的一种工具。由于其通过几何包含将集合中的元素形象化的简单方法,没有经验的读者也很容易读懂。将集合可视化为对齐矩形的欧拉图特别有趣。在这项工作中,我们将这种矩形欧拉图的存在与相关阶次关系的阶次维度联系起来。为此,我们考虑了一维和二维的欧拉图。在一维情况下,这种对应关系为我们提供了一种计算欧拉图的多项式时间算法,而在二维情况下,则会产生一种指数时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizability of Rectangular Euler Diagrams
Euler diagrams are a tool for the graphical representation of set relations. Due to their simple way of visualizing elements in the sets by geometric containment, they are easily readable by an inexperienced reader. Euler diagrams where the sets are visualized as aligned rectangles are of special interest. In this work, we link the existence of such rectangular Euler diagrams to the order dimension of an associated order relation. For this, we consider Euler diagrams in one and two dimensions. In the one-dimensional case, this correspondence provides us with a polynomial-time algorithm to compute the Euler diagrams, while the two-dimensional case results in an exponential-time algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信